Hi list,
Could someone help me to explain why the leave-one-out cross validation results I got from svm using the internal option "cross" are different from those I got manually? It seems using "cross" to do cross validation, the results are always better. Please see the code below. I also include lda as a comparison. I'm using WinXP, R-2.9.0, and e1071_1.5-19. Many thanks! ...Tao ##================================================== ## manual ## ## > set.seed(1234) > dat <- data.frame( rbind(matrix(rnorm(1000),ncol = 10), matrix(rnorm(1000, > mean=0.6),ncol = 10))) > cl <- as.factor(rep(1:2, each=100)) > y.lda <- rep(NA, nrow(dat)) > y.svm <- rep(NA, nrow(dat)) > for (i in 1:nrow(dat)){ + testset <- dat[i, ] + trainset <- dat[-i, ] + model.lda <- lda(cl[-i]~., data=trainset) + model.svm <- svm(cl[-i]~., data=trainset) + y.lda[i] <- as.character(predict(model.lda, testset)$class) + y.svm[i] <- as.character(predict(model.svm, testset)) + } > > table(y.lda, cl) cl y.lda 1 2 1 84 10 2 16 90 > table(y.svm, cl) cl y.svm 1 2 1 83 8 2 17 92 ##========================================== ## using internal CV options ## > z2 <- lda(cl~., data=dat, CV=T) > table(z2$class, cl) cl 1 2 1 84 10 2 16 90 > z <- svm(cl~., data=dat, cross=200) > table(z$fitted, cl) cl 1 2 1 93 4 2 7 96 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.