On Mon, Jul 6, 2009 at 12:12 AM, nyk<n...@nyk.ch> wrote:
>
> Thanks for your reply! This is what I was looking for!
> I'm using
> nas1 <- apply(data_matrix,1,function(x)sum(is.na(x))/nrow(data_matrix))
> nas2 <- apply(data_matrix,2,function(x)sum(is.na(x))/ncol(data_matrix))

You can simplify this a little:

perc_missing <- function(x) mean(is.na(x))

nas1 <- apply(data_matrix,1, perc_missing)
nas2 <- apply(data_matrix,2, perc_missing)

or if your matrix is really big the following should be faster:

nas1 <- rowMeans(is.na(data_matrix))
nas2 <- colMeans(is.na(data_matrix))

Hadley

-- 
http://had.co.nz/

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to