Hello, We have a system which creates thousands of regression/classification models and in cases where we have only one input variable NaiveBayes throws an error. Maybe I am mistaken and I shouldn't expect to have a model with only one input variable.
We use R version 2.6.0 (2007-10-03). We use caret (v4.1.19), but have tested similar code with klaR (v.0.5.8), because caret relies on NaiveBayes implementation from klaR. I get different error messages from caret than from klaR so I will provide the code for caret usage and klaR usage. Here is the code which uses the iris dataset. > library(klaR); Loading required package: MASS > X<-iris["Sepal.Length"]; > Y<-iris["Species"]; > mnX<-as.matrix (X); > mnY<-as.matrix (Y); > cY<-factor(mnY); > d <- data.frame (cbind(mnX,cY)); > m<-NaiveBayes(cY~mnX, data=d); > predict(m); Error in as.vector(x, mode) : invalid argument 'mode' > library(caret); Loading required package: lattice > mCaret<-train(mnX,cY,method="nb",trControl = trainControl(method = "cv", > number = 10)); Loading required package: class Fitting: usekernel=TRUE Fitting: usekernel=FALSE > predicted <- predict(mCaret, newdata=mnX); Error in 1:nrow(newdata) : NA/NaN argument > We use caret to call NaiveBayes and we don't have any error messages in cases where the number of input variables is greater than 1. Cheers DK _________________________________________________________________ [[elided Hotmail spam]] [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.