Dear All, The std. error of the estimated coefficients obtained by the summary.lm function can be calculated as:
y=rnorm(20) x=y+rnorm(20) fit <- lm(y ~ x) summary(fit) sqrt( sum(fit$resid**2)/fit$df.resid * solve(t(model.matrix(fit))%*%model.matrix(fit)) ) Is posible calculate Std. Error for glm as lm, using cov(hat beta) = phi * solve(t(X) %*% hat W %*% X)^-1 on R? Who is hat W and phi output glm? y=rpois(20,4) fit.glm <- glm(y ~ x, family=poisson summary(fit.glm) Fitted to a model glm using constrast contr.sum and need compute the error standard for last level of the factor. best wishes for all, Ricardo. Veja quais são os assuntos do momento no Yahoo! +Buscados http://br.maisbuscados.yahoo.com ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.