Hi Jorge,

That is exactly what I wanted -  I should have given a reasonable  
number of observations (my set has *almost* all paired observations,  
so it will still break with that approach unless I manicure the data  
set). Is there a way to fail nicely on a single one of the tests  
without the whole thing failing?

again, thanks for your help
Dan


On 25/03/2009, at 7:46 AM, Jorge Ivan Velez wrote:

> # Data
> set.seed(1)
> x<-sample(1:3,100,replace=TRUE)
> y<-sample(1:20,100,replace=TRUE)
> z<-rnorm(100)
> Data<-data.frame(x,y,z)
>
> # Observations for Type and Class
> with(Data, table(x,y))
>
>
> # Splitting the data by Class
> SD<-with(Data,split(Data,y))
>
> res<-lapply(SD, function(.data){
>           # Type combinations by Class
>           combs<-t(combn(sort(unique(.data[,1])),2))
>
>           # Applying the t-test for them
>             apply(combs,1, function(.r){
>                 x1<-.data[.data[,1]==.r[1],3]  # select third column
>                 x2<-.data[.data[,1]==.r[2],3]  # select third column
>                 tvalue<-t.test(x1,x2)
>                 res<-c(tvalue$statistic,tvalue$parameter,tvalue 
> $p.value)
>                 names(res)<-c('stat','df','pvalue')
>                 res
>                         }
>                        )
>             }
>      )
>
> res
>


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to