Dear R users,

I have a question on the confusion matrix generated by function randomForest. 
I used the entire data
set to generate the forest, for example:
> print(iris.rf) 

Call: 
 randomForest(formula = Species ~ ., data = iris, importance = TRUE,     
keep.forest = TRUE) 

confusion
           setosa versicolor virginica class.error
setosa         50          0         0        0.00
versicolor      0         47         3        0.06
virginica       0          3        47        0.06

then I classified the same data set with this forest:

> iris.pred <- predict(iris.rf, iris)
> table(observed = iris[,"Species"], predicted = iris.pred)
            predicted
observed     setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         50         0
  virginica       0          0        50
Why the two matrices are different?
Thinks,

Li



      
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to