Dear R user I follow the steps defined in Modern applied statistics page(453) to use optim. However, when I run the following code the parameters seems way off and the third parameter(p3) stayed as the initial value. below is the code: ## data da=c(418,401,416,360,411,425,537,379,484,388,486,380,394,363,405,383,392,363,398,526)
### initial values pars=c(392.25, 507.25, 0.80) p1=pars[1];p2=pars[2];p3=pars[3] ### Objective function mix.obj = function(p,x) { e =p[3]*(pnorm((x+1/2-p[1])/sqrt(p[1]))-pnorm((x-1/2-p[1])/sqrt(p[1]))) + (1-p[3])*(pnorm((x-1/2-p[2])/sqrt(p[2]))-pnorm((x-3/2-p[2])/sqrt(p[2]))) if (any(e<=0)) Inf else -sum(log(e)) } ### Calculate the first derivatives of the objective function. lmix2a = deriv(~ -log(p3*pnorm((x+1/2-p1)/sqrt(p1))-pnorm((x-1/2-p1)/sqrt(p1)) + (1-p3)*pnorm((x-1/2-p2)/sqrt(p2))-pnorm((x-3/2-p2)/sqrt(p2))), c("p3","p2","p1"), function(x,p1,p2,p3) NULL) mix.gr = function(p,x) { p3 = p[3] p2 = p[2] p1 = p[1] colSums(attr(lmix2a(x,p3,p2,p1),"gradient")) } ### optim (resultsBFGS_D=optim(pars,mix.obj,mix.gr,x=da,method="L-BFGS-B",lower=rep(0,3),upper=c(Inf,Inf,1),hessian=T)$par) Also, sometimes it gives me the following error: Error in optim(pars, mix.obj, mix.gr, x = da, method = "L-BFGS-B", lower = rep(0, : L-BFGS-B needs finite values of 'fn' Thanks in advance for ur help. -- View this message in context: http://www.nabble.com/Optim-tp21970390p21970390.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.