Problem: I am sorting through model selection process for first time and want to make sure that I have used glm, stepAIC, and update correctly. Something is strange because I get a different result between:
1) a glm of 12 predictor variables followed by a stepAIC where all interactions are considered and then an update to remove one specific interaction. vs. 2) entering all the terms individually in a glm (exept the one that I removed with update and 4 others like it but which did not make it to final model anyway), and then running stepAIC. Question: Why do these processes not yield same model? Here are all the details if helpful: I start with 12 potential predictor variables, 7 "primary" terms and 5 additional that are I(primary_terms^2). I run a glm for these 12 and then do stepAIC (BIC actually) both directions. The scope argument is scope=list(upper=~.^2,lower=NULL). This means there are 78 predictor terms considered, the 12 primary terms and 66 interactions [n(n+1)/2]. I see this with trace=T also. Here is the code used: >glm1<-glm(formula = PRESENCE == "1" ~ SNOW + I(SNOW^2) + POP_DEN + ROAD_DE + ADJELEV + I(ADJELEV^2) + TRI + I(TRI^2) + EDGE + I(EDGE^2) + TREECOV + I(TREECOV^2),family = binomial, data = wolv) summary(glm1) >library(MASS) >stepglm2<-stepAIC(glm1,scope=list(upper=~.^2,lower=NULL), trace=T,k=log(4828),direction="both") > summary(stepglm2) > extractAIC(stepglm2,k=log(4828)) This results in a 15 term model with a BIC of 3758.659 > Coefficients: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -4.983e+01 9.263e+00 -5.379 7.50e-08 *** > SNOW 6.085e-02 8.641e-03 7.041 1.90e-12 *** > ROAD_DE -5.637e-01 1.192e-01 -4.730 2.24e-06 *** > ADJELEV 2.880e-02 7.457e-03 3.863 0.000112 *** > I(ADJELEV^2) -4.038e-06 1.487e-06 -2.715 0.006618 ** > TRI 5.675e-02 1.081e-02 5.248 1.54e-07 *** > I(TRI^2) -1.713e-03 4.243e-04 -4.036 5.43e-05 *** > EDGE 6.418e-03 1.697e-03 3.782 0.000156 *** > TREECOV 1.680e-01 2.929e-02 5.735 9.76e-09 *** > SNOW:ADJELEV -4.313e-05 6.935e-06 -6.219 5.00e-10 *** > ADJELEV:TREECOV -6.628e-05 1.161e-05 -5.711 1.13e-08 *** > SNOW:I(ADJELEV^2) 7.437e-09 1.384e-09 5.373 7.74e-08 *** > TRI:I(TRI^2) 1.321e-06 3.419e-07 3.863 0.000112 *** > I(ADJELEV^2):I(TRI^2) -2.127e-10 5.745e-11 -3.702 0.000214 *** > ADJELEV:I(TRI^2) 1.029e-06 3.004e-07 3.424 0.000617 *** > SNOW:TRI 1.057e-05 3.372e-06 3.135 0.001721 ** The final model included a the TRI:I(TRI^2) term, which is effectively a cubic function. So this was removed because cubic's were not considered for all variables. I used update to remove TRI:I(TRI^2). Code: >stepglm3<-update(stepglm2,~.-TRI:I(TRI^2),trace=T) > summary(stepglm3) > extractAIC(stepglm3,k=log(4828)) This results in a 14 term model with a BIC of 3770.172. The BIC is a little higher, but the cubic term improved fit and is no longer in, so expected. >Coefficients: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -5.329e+01 9.267e+00 -5.750 8.92e-09 *** > SNOW 6.241e-02 8.695e-03 7.178 7.06e-13 *** > ROAD_DE -5.756e-01 1.184e-01 -4.863 1.16e-06 *** > ADJELEV 3.233e-02 7.452e-03 4.338 1.44e-05 *** > I(ADJELEV^2) -4.724e-06 1.487e-06 -3.177 0.001489 ** > TRI 1.834e-02 5.402e-03 3.395 0.000687 *** > I(TRI^2) -1.122e-03 3.920e-04 -2.863 0.004190 ** > EDGE 6.344e-03 1.690e-03 3.754 0.000174 *** > TREECOV 1.745e-01 2.923e-02 5.969 2.39e-09 *** > SNOW:ADJELEV -4.444e-05 6.984e-06 -6.363 1.98e-10 *** > ADJELEV:TREECOV -6.885e-05 1.160e-05 -5.937 2.90e-09 *** > SNOW:I(ADJELEV^2) 7.681e-09 1.395e-09 5.506 3.67e-08 *** > I(ADJELEV^2):I(TRI^2) -1.839e-10 5.692e-11 -3.232 0.001231 ** > ADJELEV:I(TRI^2) 8.860e-07 2.974e-07 2.979 0.002892 ** > SNOW:TRI 1.219e-05 3.260e-06 3.740 0.000184 *** This all seems to be as it should. I then decided to try and confim this result by running a glm without any of the 5 potential cubic terms ( note - TRI:I(TRI^2) was the only one that made it into the final model but there were 5 potential). After entering the 73 potential terms (12 primary vaiables and now 66 minus 5 interactions = 73 total), the glm and stepAIC produces a completely different final model. It has 8 variables that were not in the model that was chosen with scope statement and manually removing TRI:TRI^2, and it is missing 7 variables that were in the model chosen with the scope statement. It has 8 variables that were in both. Code and Result: >glmalt1b<-glm(formula = PRESENCE =="1" ~ SNOW+SNOW:POP_DEN+SNOW:ROAD_DE+SNOW:ADJELEV+SNOW:I(ADJELEV^2)+SNOW:TRI+SNOW: I(TRI^2)+SNOW:EDGE+SNOW:I(EDGE^2)+SNOW:TREECOV+SNOW:I(TREECOV^2)+I(SNOW^2)+I (SNOW^2):POP_DEN+ > I(SNOW2):ROAD_DE+I(SNOW^2):ADJELEV+I(SNOW^2):I(ADJELEV^2)+I(SNOW^2):TRI+I(SN OW^2):I(TRI^2)+I(SNOW^2):EDGE+I(SNOW^2):I(EDGE^2)+I(SNOW^2):TREECOV+I(SNOW^2 ):I(TREECOV^2)+POP_DEN+POP_DEN:ROAD_DE+ > POP_DEN:ADJELEV+POP_DEN:I(ADJELEV^2)+POP_DEN:TRI+POP_DEN:I(TRI^2)+POP_DEN:ED GE+POP_DEN:I(EDGE^2)+POP_DEN:TREECOV+POP_DEN:I(TREECOV^2)+ROAD_DE+ROAD_DE:AD JELEV+ROAD_DE:I(ADJELEV^2)+ROAD_DE:TRI+ > ROAD_DE:I(TRI^2)+ROAD_DE:EDGE+ROAD_DE:I(EDGE^2)+ROAD_DE:TREECOV+ROAD_DE:I(TR EECOV^2)+ADJELEV+ADJELEV:TRI+ADJELEV:I(TRI^2)+ADJELEV:EDGE+ADJELEV:I(EDGE^2) +ADJELEV:TREECOV+ADJELEV:I(TREECOV^2)+I(ADJELEV^2)+ > I(ADJELEV^2):TRI+I(ADJELEV^2):I(TRI^2)+I(ADJELEV^2):EDGE+I(ADJELEV^2):I(EDGE ^2)+I(ADJELEV^2):TREECOV+I(ADJELEV^2):I(TREECOV^2)+TRI+TRI:EDGE+TRI:I(EDGE^2 )+TRI:TREECOV+TRI:I(TREECOV^2)+I(TRI^2)+ > I(TRI^2):EDGE+I(TRI^2):I(EDGE^2)+I(TRI^2):TREECOV+I(TRI^2):I(TREECOV^2)+EDGE +EDGE:TREECOV+EDGE:I(TREECOV^2)+I(EDGE^2)+I(EDGE^2):TREECOV+I(EDGE^2):I(TREE COV^2)+TREECOV+I(TREECOV^2), family=binomial, data=wolv) > summary(glmalt1b) > stepglmalt2b<-stepAIC(glmalt1b, trace=T, k=log(4828), direction="both") #BIC > summary(stepglmalt2b) > extractAIC(stepglmalt2b,k=log(4828)) > >Coefficients: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -1.995e+01 7.499e+00 -2.660 0.007819 ** > SNOW 1.641e-02 4.881e-03 3.363 0.000772 *** > I(SNOW^2) 2.238e-05 4.729e-06 4.732 2.22e-06 *** > ROAD_DE -5.619e-01 1.187e-01 -4.733 2.21e-06 *** > ADJELEV 4.361e-03 5.876e-03 0.742 0.457966 > I(ADJELEV^2) 1.001e-06 1.165e-06 0.859 0.390257 > TRI -1.982e-01 6.066e-02 -3.268 0.001083 ** > I(TRI^2) -6.842e-05 1.868e-05 -3.664 0.000249 *** > I(EDGE^2) 6.321e-05 2.119e-05 2.983 0.002857 ** > I(TREECOV^2) 2.947e-03 4.984e-04 5.912 3.38e-09 *** > SNOW:ADJELEV -6.244e-06 1.959e-06 -3.187 0.001438 ** > SNOW:TRI 1.018e-05 3.403e-06 2.991 0.002778 ** > I(SNOW^2):ADJELEV -1.852e-08 3.477e-09 -5.326 1.00e-07 *** > I(SNOW^2):I(ADJELEV^2) 3.726e-12 6.771e-13 5.503 3.73e-08 *** > ADJELEV:TRI 1.887e-04 4.895e-05 3.855 0.000116 *** > I(ADJELEV^2):TRI -4.010e-08 9.697e-09 -4.135 3.55e-05 *** > I(ADJELEV^2):I(TREECOV^2) -4.532e-10 7.727e-11 -5.865 4.48e-09 *** If anyone can tell me why this is different I would greatly appreciate it. Also, why does this last model include terms that are not significant? Thanks Bob ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.