I remember have the same consternation using GLIM with binomial models on grouped and ungrouped data, but I was counseled by my betters only to consider differences in models. The differences in deviance are the same up to rounding error.

> 859.8018 - 711.3479
[1] 148.4539

> 168.8-20.3
[1] 148.5

So I would ask if these really are different answers?

--
David Winsemius
Heritage Labs

On Jan 13, 2009, at 10:06 AM, Prof Brian Ripley wrote:

Withut looking up your reference, are you not comparing grouped and ungrouped deviances? And polr() does not say anything about accepting a model (or not), only about the comparison between two models.

'Deviances' are in comparison with some 'saturated' model, and I would say that M&N are comparing with a separate fit to each group, polr() with correctly predicting each observation. Both are valid, but refer to different questions.

On Tue, 13 Jan 2009, Gerard M. Keogh wrote:


Dear all,


I've replicated the cheese tasting example on p175 of GLM's by McCullagh
and Nelder. This is a 4 treatment (rows) by 9 ordinal response (cols)
table.

Here's my simple code:

    #### cheese
    library(MASS)
    options(contrasts = c("contr.treatment", "contr.poly"))
y = c(0,0, 1, 7, 8,8,19, 8,1, 6,9,12,11, 7,6, 1, 0,0, 1,1, 6, 8,23,7,
    5, 1,0, 0,0, 0, 1, 3,7,14,16,11)
    p =
c (1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9 )
    x1 =
c (1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 )
    x2 =
c (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 )
    x3 =
c (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0 )
    # catgeory 4 is used as baseline
    ord.rp = ordered(p)
    fit0.polr = polr(ord.rp ~ 1, weights=y)
    fit1.polr = polr(ord.rp ~ x1 + x2+x3, weights=y)
    summary(fit1.polr)
    anova(fit0.polr,fit1.polr)

This works and "summary" gives the correct parameter estimates but I have a
problem with the deviance.
Anova gives
    Likelihood ratio tests of ordinal regression models

    Response: ord.rp
             Model Resid. df Resid. Dev   Test    Df LR stat. Pr(Chi)
    1            1       200   859.8018
    2 x1 + x2 + x3       197   711.3479 1 vs 2     3 148.4539       0


In McCullagh the deviance for the null model is given as 168.8 on 24 d.f.
and the fitted model is 20.3 on 21 d.f.
This means the change in POLR and in the book is 148.5 on 3 d.f. so the
model gives a significant improvement.

But the model deviance from POLR is 711 vs. 20.3 from McCullagh.
Thus POLR says we should reject the model fit with chi-sq = 35 while
McCullagh say we should accept it

Could someone explain what I should do when it comes to accepting or
rejecting the model fit itself in R?

I'm using R 2.8.0.

Thanks.

Gerard


**********************************************************************************
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited. If you received this in error, please contact the sender and delete the material from any computer. It is the policy of the Department of Justice, Equality and Law Reform and the Agencies and Offices using its IT services to disallow the sending of offensive material. Should you consider that the material contained in this message is offensive you should contact the sender immediately and also mailminder[at]justice.ie.

Is le haghaidh an duine nó an eintitis ar a bhfuil sí dírithe, agus le haghaidh an duine nó an eintitis sin amháin, a bheartaítear an fhaisnéis a tarchuireadh agus féadfaidh sé go bhfuil ábhar faoi rún agus/nó faoi phribhléid inti. Toirmisctear aon athbhreithniú, atarchur nó leathadh a dhéanamh ar an bhfaisnéis seo, aon úsáid eile a bhaint aisti nó aon ghníomh a dhéanamh ar a hiontaoibh, ag daoine nó ag eintitis seachas an faighteoir beartaithe. Má fuair tú é seo trí dhearmad, téigh i dteagmháil leis an seoltóir, le do thoil, agus scrios an t-ábhar as aon ríomhaire. Is é beartas na Roinne Dlí agus Cirt, Comhionannais agus Athchóirithe Dlí, agus na nOifígí agus na nGníomhaireachtaí a úsáideann seirbhísí TF na Roinne, seoladh ábhair cholúil a dhícheadú. Más rud é go measann tú gur ábhar colúil atá san ábhar atá sa teachtaireacht seo is ceart duit dul i dteagmháil leis an seoltóir láithreach agus le mailminder[ag]justice.ie chomh maith.
***********************************************************************************



______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


--
Brian D. Ripley,                  rip...@stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK Fax: +44 1865 272595______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to