I have been using the following random intercept model with non-informative
prior:
model {
for (i in 1:n.samples) {
vomit[i] ~ dbern(p[i])
logit(p[i]) <- beta0 + alpha[siteid[i]]
}
for (j in 1:n.sites) {
alpha[j]~dnorm(0,tau)
}
beta0 ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.01,0.01)
}
list(n.samples=3780,n.sites=63)

How could I use a beta conjugate prior for the same model so that
p(i) ~ dbeta(alpha,beta)?

Thanks for your help.


> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html>
> and provide commented, minimal, self-contained, reproducible code.
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to