[EMAIL PROTECTED]
 
Hello
 
First I want to implement exponential regression in R, with out constant for 
the following formula. 

Y = exp(a*X)

‘a’ is coefficient I wanted to determine. That I could do also in SPSS but my 
question is rather to estimate the ‘standard error of  Ŷi  at each Xi. This is 
called in SPSS ‘satndard error of mean prediction’ or generally known for 
non-linear regression as ‘asymptotic standard error’. This is different from 
residual.
  
Below is the example data set for which I wanted to calculate the coefficient 
‘a’ for the exponential regression in the form stated above and ‘standard error 
of Ŷi’. For this specific data, ‘a’ is computed using SPSS and the result is 
0.5620. So, Y = exp(0.5620*X).
 
 
X         Y                 SE of Ŷi 
2         2.927064         ? 
5         14.6582           ? 
4         8.567706         ? 
3         5.007817         ? 
1         1.710867         ? 
6         25.07823         ? 
4         8.567706         ? 
7         42.9055           ? 
2         2.927064         ? 
8         125.5872         ? 
8         125.5872         ? 
7         42.9055          ? 
 
My questions are (1), how I implement exponential regression in R and (2) how 
to calculate the ‘standard error of Ŷi’’ for each Xi. 
 
Well, 
> exp1 <- nls(Y~exp(X*a), start=list(a=0.3), trace=T)
 
from this I can get summary statistics, 'a' is different from what i obtained 
using SPSS. Can someone help please atleast with getting SE of Ŷi.
 
I wrote very long to make the question clear.
 
thanks in advance
 
ggalex
 
Helsinki, Finland
[EMAIL PROTECTED]





______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to