Hello Christos, To my surprise, vectorization actually hurt processing speed!
#Example X <- c("ab", "cd", "ef") patt <- c("b", "cd", "a") repl <- c("B", "CD", "A") sub2 <- function(pattern, replacement, x) { len <- length(x) if (length(pattern) == 1) pattern <- rep(pattern, len) if (length(replacement) == 1) replacement <- rep(replacement, len) FUN <- function(i, ...) { sub(pattern[i], replacement[i], x[i], fixed = TRUE) } idx <- 1:length(x) sapply(idx, FUN) } system.time( for(i in 1:10000) sub2(patt, repl, X) ) user system elapsed 1.18 0.07 1.26 system.time( for(i in 1:10000) mapply(function(p, r, x) sub(p, r, x, fixed = TRUE), p=patt, r=repl, x=X) ) user system elapsed 1.42 0.05 1.47 So much for avoiding loops. John Thaden ======= At 2008-10-07, 14:58:10 Christos wrote: ======= >John, >Try the following: > > mapply(function(p, r, x) sub(p, r, x, fixed = TRUE), p=patt, r=repl, x=X) > b cd a >"aB" "CD" "ef" > >-Christos >> -----My Original Message----- >> R pattern-matching and replacement functions are >> vectorized: they can operate on vectors of targets. >> However, they can only use one pattern and replacement. >> Here is code to apply a different pattern and replacement for >> every target. My question: can it be done better? >> >> sub2 <- function(pattern, replacement, x) { >> len <- length(x) >> if (length(pattern) == 1) >> pattern <- rep(pattern, len) >> if (length(replacement) == 1) >> replacement <- rep(replacement, len) >> FUN <- function(i, ...) { >> sub(pattern[i], replacement[i], x[i], fixed = TRUE) >> } >> idx <- 1:length(x) >> sapply(idx, FUN) >> } >> >> #Example >> X <- c("ab", "cd", "ef") >> patt <- c("b", "cd", "a") >> repl <- c("B", "CD", "A") >> sub2(patt, repl, X) >> >> -John ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.