Hi, I am trying to use a non linear regresion form like: f(x) ~ fmax*(1-exp(-a*(x-c)). > nls.NEE.fill <- nls(NEE ~ -NEE.max*(1-exp(-alpha*(PAR-I))), > start=list(NEE.max=-25,alpha=5,I=20)) I have given random values to a and c (alpha and I). But it gives my an error: Error in nlsModel(formula, mf, start) : singular gradient matrix at initial parameter estimates Before that I used other nls, because I had used it for other data set and worked without errors. > nls.NEE.fill <- nls(NEE ~ offset + (NEE.max*PAR)/(alpha + PAR), start=list > (NEE.max=-25, alpha=0.5, offset=5)) But for this dataset it gives the following: Error in numericDeriv(form[[3]], names(ind), env) : Missing value or an infinity produced when evaluating the model What should I do? Thank you All my best Laura _________________________________________________________________ ¿Quieres los emoticonos y guiños más divertidos? Descárgate Interne[[elided Hotmail spam]]
[[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.