Às 08:27 de 18/10/2024, Rui Barradas escreveu:
Às 22:50 de 17/10/2024, Sparks, John escreveu:
Hi R Helpers,

I have been looking for an example of how to execute different dplyr mutate statements on the same dataframe in a single step.  I show how to do what I want to do by going from df0 to df1 to df2 to df3 by applying a mutate statement to each dataframe in sequence, but I would like to know if there is a way to execute this in a single step; so simply go from df0 to df1 while executing all the transformations. See example below.

Guidance would be appreciated.
--John J. Sparks, Ph.D.

library(dplyr)
df0<-structure(list(SeqNum = c(1L, 2L, 3L, 4L, 5L, 6L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 18L, 19L, 21L, 22L, 23L), MOSTYP = c(37L,
41L, 41L, 13L, 3L, 27L, 37L, 37L, 15L, 14L, 13L, 37L, 4L, 27L,
37L, 26L, 17L, 37L, 37L, 17L), MGEMOM = c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L),
     MGODRK = c(3L, 2L, 2L, 3L, 4L, 2L, 2L, 2L, 3L, 4L, 3L, 2L,
     3L, 1L, 2L, 3L, 4L, 4L, 3L, 3L), MOSHOO = c(7L, 7L, 7L, 2L,
     9L, 4L, 7L, 7L, 2L, 2L, 2L, 7L, 9L, 4L, 7L, 4L, 2L, 7L, 7L,
     2L), MRELGE = c(0L, 1L, 0L, 2L, 1L, 0L, 0L, 0L, 3L, 1L, 1L,
     1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L), MSKB2 = c(5L, 4L, 4L,
     3L, 4L, 5L, 7L, 1L, 5L, 4L, 3L, 4L, 5L, 6L, 7L, 5L, 4L, 6L,
     4L, 7L), MFWEKI = c(1L, 1L, 2L, 2L, 1L, 0L, 0L, 3L, 0L, 1L,
     2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L), MAANTH = c(3L, 4L,
     4L, 4L, 4L, 5L, 2L, 6L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 3L,
     3L, 3L, 2L), MHHUUR = c(2L, 2L, 4L, 2L, 2L, 3L, 0L, 3L, 2L,
     2L, 2L, 3L, 1L, 6L, 0L, 2L, 2L, 0L, 2L, 2L), MSKA = c(1L,
     0L, 4L, 2L, 2L, 3L, 0L, 3L, 2L, 0L, 2L, 3L, 1L, 5L, 0L, 0L,
     1L, 0L, 0L, 1L), MAUT2 = c(2L, 4L, 4L, 3L, 4L, 5L, 5L, 3L,
     2L, 3L, 3L, 4L, 4L, 3L, 5L, 2L, 3L, 3L, 2L, 3L), MFALLE = c(1L,
     0L, 0L, 3L, 5L, 0L, 0L, 0L, 0L, 4L, 1L, 1L, 2L, 2L, 0L, 2L,
     5L, 0L, 0L, 3L), MGEMLE = c(1L, 0L, 0L, 0L, 4L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 3L, 2L, 0L), MAUT1 = c(2L,
     5L, 7L, 3L, 0L, 4L, 2L, 1L, 3L, 9L, 5L, 3L, 2L, 4L, 2L, 1L,
     3L, 0L, 4L, 2L), MINKGE = c(2L, 4L, 2L, 2L, 0L, 2L, 2L, 1L,
     3L, 0L, 1L, 4L, 2L, 2L, 2L, 5L, 1L, 0L, 3L, 1L), MOPLHO = c(1L,
     0L, 0L, 0L, 0L, 2L, 2L, 1L, 2L, 0L, 0L, 1L, 0L, 0L, 2L, 0L,
     0L, 0L, 0L, 0L), MGODPR = c(1L, 2L, 2L, 0L, 1L, 3L, 2L, 3L,
     2L, 1L, 2L, 3L, 0L, 3L, 2L, 2L, 2L, 0L, 2L, 1L), MAUT0 = c(8L,
     6L, 9L, 7L, 5L, 9L, 6L, 7L, 6L, 5L, 4L, 7L, 8L, 5L, 6L, 7L,
     5L, 9L, 9L, 5L), MSKB1 = c(0L, 2L, 4L, 1L, 0L, 5L, 2L, 7L,
     2L, 0L, 3L, 3L, 3L, 4L, 2L, 0L, 2L, 3L, 3L, 1L), MSKC = c(4L,
     5L, 3L, 4L, 6L, 3L, 3L, 2L, 4L, 8L, 3L, 3L, 4L, 3L, 3L, 4L,
     4L, 3L, 3L, 5L), PAANHA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), PWAPAR = c(0L,
     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L), PPERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AMOTSC = c(0L,
     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L), APERSA = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), AWAPAR = c(1L,
     1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L,
     1L, 0L, 1L, 1L), Resp = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
     0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA,
20L), class = "data.frame")

            
df1<-df0 %>%
   mutate(across(starts_with('P'),~ifelse(.x==0,   0,
                                   ifelse(.x==1,   25,
                                                  ifelse(.x==2,   75,
                                                  ifelse(.x==3,  150,
                                                  ifelse(.x==4,  350,
                                                  ifelse(.x==5,  750,
                                                  ifelse(.x==6, 3000,
                                                  ifelse(.x==7, 7500,
                                                  ifelse(.x==8,15000,
                                                  ifelse(.x==9,30000,
                                                  -99))))))))))))

df2<-df1 %>%
mutate_at(vars(MRELGE:MSKC),~ifelse(.x==0,  0,
                              ifelse(.x==1,  5,
                                                      -99)))
df3<-df2 %>%
mutate_at(vars(MGODRK),~ifelse(.x==0,  0,
                         ifelse(.x==1,  5,
                                                      -99)))




    [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide https://www.R-project.org/posting- guide.html
and provide commented, minimal, self-contained, reproducible code.
Hello,

Use chained mutate() %>% mutate(). In the 2nd mutate I don't even have to pipe a third time, the final variable is changed in the same instruction.

Also use mutate(across(...)), mutate_at is deprecated.

And use ?case_when instead of nested ifelse's. It's much cleaner.

As you can see, the result is identical to your code's result.



library(dplyr)

df3b <- df0 %>%
   mutate(
     across(starts_with('P'), ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 25,
       .x == 2 ~ 75,
       .x == 3 ~ 150,
       .x == 4 ~ 350,
       .x == 5 ~ 750,
       .x == 6 ~ 3000,
       .x == 7 ~ 7500,
       .x == 8 ~ 15000,
       .x == 9 ~ 30000,
       TRUE ~ -99
     ))
   ) %>%
   mutate(
     across(MRELGE:MSKC, ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 5,
       TRUE ~ -99
     )),
     MGODRK = case_when(
       MGODRK == 0 ~ 0,
       MGODRK == 1 ~ 5,
       TRUE ~ -99
     ))

identical(df3, df3b)
# [1] TRUE


And you can have just one mutate, as long as you respect the order the variables are changed.



df3c <- df0 %>%
   mutate(
     across(starts_with('P'), ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 25,
       .x == 2 ~ 75,
       .x == 3 ~ 150,
       .x == 4 ~ 350,
       .x == 5 ~ 750,
       .x == 6 ~ 3000,
       .x == 7 ~ 7500,
       .x == 8 ~ 15000,
       .x == 9 ~ 30000,
       TRUE ~ -99
     )),
     across(MRELGE:MSKC, ~case_when(
       .x == 0 ~ 0,
       .x == 1 ~ 5,
       TRUE ~ -99
     )),
     MGODRK = case_when(
       MGODRK == 0 ~ 0,
       MGODRK == 1 ~ 5,
       TRUE ~ -99
     )
   )

identical(df3, df3c)
# [1] TRUE


Hope this helps,

Rui Barradas


Hello,

Two other simpler solutions.
In the pipes above you can put the two last case_when statements together.



df3d <- df0 %>%
  mutate(
    across(starts_with('P'), ~case_when(
      .x == 0 ~ 0,
      .x == 1 ~ 25,
      .x == 2 ~ 75,
      .x == 3 ~ 150,
      .x == 4 ~ 350,
      .x == 5 ~ 750,
      .x == 6 ~ 3000,
      .x == 7 ~ 7500,
      .x == 8 ~ 15000,
      .x == 9 ~ 30000,
      TRUE ~ -99
    )),
    across(c(MGODRK, MRELGE:MSKC), ~case_when(
      .x == 0 ~ 0,
      .x == 1 ~ 5,
      TRUE ~ -99
    ))
  )

identical(df3, df3d)
# [1] TRUE



And this one combines ifelse with case_when. But you need to create an auxiliary variable of the new values for the 'P' case.



P_new_vals <- c(0, 25, 75, 150, 350, 750, 3000, 7500, 15000, 30000)
df3e <- df0 %>% mutate(
  across(starts_with('P'), ~ifelse(.x %in% 0:9, P_new_vals[.x + 1L], -99)),
  across(c(MGODRK, MRELGE:MSKC), ~case_when(
    .x == 0 ~ 0,
    .x == 1 ~ 5,
    TRUE ~ -99
  ))
)
identical(df3, df3e)
# [1] TRUE


Hope this helps,

Rui Barradas


--
Este e-mail foi analisado pelo software antivírus AVG para verificar a presença 
de vírus.
www.avg.com

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide https://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to