Dear community
Using after_stat() I was able to visualise ggplot with standard deviations instead of a confidence interval as seen in the R help. p1<-ggplot(data = MS1, aes(x= Jahr, y= QI_A,color=Bio, linetype=Bio)) + geom_smooth(aes(fill=Bio, ymax=after_stat(y+se*sqrt(length(y))), ymin=after_stat(y-se*sqrt(y))) , method = "lm" , formula = y ~ x + I(x^2),linewidth=1) + theme(panel.background = element_blank())+ theme(axis.line = element_line(colour = "black"))+ theme(axis.text=element_text(size=18))+ theme(axis.title=element_text(size=20))+ ylab("Anteil BFF an LN [%]") +xlab("Jahr")+ scale_color_manual(values=c("red","darkgreen"), labels=c("�LN", "BIO"))+ scale_fill_manual(values=c("red","darkgreen"), labels= c("�LN", "BIO"))+ theme(legend.title = element_blank())+ theme(legend.text=element_text(size=20))+ scale_linetype_manual(values=c("dashed", "solid"), labels=c("�LN", "BIO")) p1<-p1 + expand_limits(y=c(0, 30)) When comparing the plots to the simple statistics the standard deviation do not match. I assume it is because of the na.rm=TRUE which does not match length(y) in the after_stat code. However I was not able to adapt the code using NA values? Simple statistics > mean(MS2020[MS2020$Bio=="1",]$QI_A, na.rm=TRUE) [1] 26.81225 > sd(MS2020[MS2020$Bio=="1",]$QI_A, na.rm=TRUE) [1] 21.12419 > mean(MS2020[MS2020$Bio=="0",]$QI_A, na.rm=TRUE) [1] 15.86196 > sd(MS2020[MS2020$Bio=="0",]$QI_A, na.rm=TRUE) [1] 15.00405 Kind regards Sibylle [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.