Dear R-help List, I am currently trying to run a code which is available on Zenodo (https://zenodo.org/records/10997880 - 02_MicroClimModel.R).
The code downloads yearly era5 climate data. Unfortunately, the limit to download these nc-files was recently reduced to 60000. Therefore, I can not download the yearly file anymore. I have solved this by rewriting the code, so that it downloads 12 monthly files. However, I have not been able to combine these 12 monthly nc-files into one yearly file. The code gives me errors if I continue running it. I assume that the combination was not successful and might have messed up the format. I would greatly appreciate any advice on how to convert these monthly nc-files into one yearly file. Thank you very much in advance! Here is the full code: ' ***************************************************************** #' ~~ STEP 01 DOWNLOADING & PROCESSING HOURLY CLIMATE DATA # Install the remotes package if not already installed if (!requireNamespace("remotes", quietly = TRUE)) { install.packages("remotes") } # Install packages from CRAN install.packages(c("terra", "raster", "ncdf4", "lubridate")) install.packages("lutz") #install dependencies for microclima remotes::install_github("ropensci/rnoaa") # Install packages from GitHub remotes::install_github("dklinges9/mcera5") remotes::install_github("ilyamaclean/microclima") remotes::install_github("ilyamaclean/microclimf") #' ~~ Required libraries: require(terra) require(raster) require(mcera5) # https://github.com/dklinges9/mcera5 require(ncdf4) require(microclima) # https://github.com/ilyamaclean/microclima require(microclimf) # https://github.com/ilyamaclean/microclimf require(ecmwfr) require(lutz) require(lubridate) # Set paths and year of interest pathtodata <- "F:/Dat/" pathtoera5 <- paste0(pathtodata, "era5/") year <- 2019 # Set user credentials for CDS API (you have to first register and insert here your UID and API key at https://cds.climate.copernicus.eu/user/register and allow downloads) uid <- "xxx" cds_api_key <- "xxx" ecmwfr::wf_set_key(user = uid, key = cds_api_key, service = "cds") # Define the spatial extent for your tile xmn <- 18.125 xmx <- 22.875 ymn <- -1.625 ymx <- 1.875 #HERE STARTS THE SECTION WHERE I AM DOWNLOADING MONTHLY FILES # Define the temporal extent of the run start_time <- lubridate::ymd(paste0(year, "-01-01")) end_time <- lubridate::ymd(paste0(year, "-12-31")) # Function to build and send requests for each month request_era5_monthly <- function(year, month, uid, xmn, xmx, ymn, ymx, out_path) { # Define the start and end times for the month st_time <- lubridate::ymd(paste0(year, "-", sprintf("%02d", month), "-01")) en_time <- st_time + months(1) - days(1) # Create the file prefix and request file_prefix <- paste0("era5_reanalysis_", year, "_", sprintf("%02d", month)) req <- build_era5_request(xmin = xmn, xmax = xmx, ymin = ymn, ymax = ymx, start_time = st_time, end_time = en_time, outfile_name = file_prefix) # Send the request and save the data request_era5(request = req, uid = uid, out_path = out_path, overwrite = TRUE) } # Loop over each month and request data for (month in 1:12) { request_era5_monthly(year, month, uid, xmn, xmx, ymn, ymx, pathtoera5) } #HERE I AM EXPLORING ONE EXEMPLARY MONTHLY NC FILE file_path <- paste0(pathtoera5, "era5_reanalysis_2019_01_2019.nc") nc <- nc_open(file_path) # List all variables print(nc) # List all variable names in the NetCDF file var_names <- names(nc$var) print(var_names) checkJan <- raster(paste0(pathtoera5, "era5_reanalysis_2019_01_2019.nc")) print(checkJan) opencheckJan <- getValues(checkJan) opencheckJan #HERE IS THE PROBLEM, I AM TRYING TO COMBINE THESE MONTHL NC FILES combine_era5_yearly <- function(year, pathtoera5, outfile) { # List of monthly files monthly_files <- list.files(pathtoera5, pattern = paste0("era5_reanalysis_", year, "_\\d{2}_", year, "\\.nc"), full.names = TRUE) if (length(monthly_files) == 0) { stop("No monthly files found") } # Initialize lists to store data lons <- NULL lats <- NULL time <- NULL t2m <- list() d2m <- list() sp <- list() u10 <- list() v10 <- list() tp <- list() tcc <- list() msnlwrf <- list() msdwlwrf <- list() fdir <- list() ssrd <- list() lsm <- list() # Read each monthly file and extract variables for (file in monthly_files) { nc <- nc_open(file) if (is.null(lons)) { lons <- ncvar_get(nc, "longitude") lats <- ncvar_get(nc, "latitude") time <- ncvar_get(nc, "time") } else { time <- c(time, ncvar_get(nc, "time")) } t2m <- c(t2m, list(ncvar_get(nc, "t2m"))) d2m <- c(d2m, list(ncvar_get(nc, "d2m"))) sp <- c(sp, list(ncvar_get(nc, "sp"))) u10 <- c(u10, list(ncvar_get(nc, "u10"))) v10 <- c(v10, list(ncvar_get(nc, "v10"))) tp <- c(tp, list(ncvar_get(nc, "tp"))) tcc <- c(tcc, list(ncvar_get(nc, "tcc"))) msnlwrf <- c(msnlwrf, list(ncvar_get(nc, "msnlwrf"))) msdwlwrf <- c(msdwlwrf, list(ncvar_get(nc, "msdwlwrf"))) fdir <- c(fdir, list(ncvar_get(nc, "fdir"))) ssrd <- c(ssrd, list(ncvar_get(nc, "ssrd"))) lsm <- c(lsm, list(ncvar_get(nc, "lsm"))) nc_close(nc) } # Combine the data for each variable t2m <- do.call(c, t2m) d2m <- do.call(c, d2m) sp <- do.call(c, sp) u10 <- do.call(c, u10) v10 <- do.call(c, v10) tp <- do.call(c, tp) tcc <- do.call(c, tcc) msnlwrf <- do.call(c, msnlwrf) msdwlwrf <- do.call(c, msdwlwrf) fdir <- do.call(c, fdir) ssrd <- do.call(c, ssrd) lsm <- do.call(c, lsm) # Create a new NetCDF file for the entire year outfile <- paste0(pathtoera5, "era5_reanalysis_", year, ".nc") dim_lon <- ncdim_def("longitude", "degrees_east", lons) dim_lat <- ncdim_def("latitude", "degrees_north", lats) dim_time <- ncdim_def("time", "hours since 1900-01-01 00:00:00", time, unlim=TRUE) # Define variables var_t2m <- ncvar_def("t2m", "K", list(dim_lon, dim_lat, dim_time), -9999) var_d2m <- ncvar_def("d2m", "K", list(dim_lon, dim_lat, dim_time), -9999) var_sp <- ncvar_def("sp", "Pa", list(dim_lon, dim_lat, dim_time), -9999) var_u10 <- ncvar_def("u10", "m/s", list(dim_lon, dim_lat, dim_time), -9999) var_v10 <- ncvar_def("v10", "m/s", list(dim_lon, dim_lat, dim_time), -9999) var_tp <- ncvar_def("tp", "m", list(dim_lon, dim_lat, dim_time), -9999) var_tcc <- ncvar_def("tcc", "1", list(dim_lon, dim_lat, dim_time), -9999) var_msnlwrf <- ncvar_def("msnlwrf", "W/m^2", list(dim_lon, dim_lat, dim_time), -9999) var_msdwlwrf <- ncvar_def("msdwlwrf", "W/m^2", list(dim_lon, dim_lat, dim_time), -9999) var_fdir <- ncvar_def("fdir", "J/m^2", list(dim_lon, dim_lat, dim_time), -9999) var_ssrd <- ncvar_def("ssrd", "J/m^2", list(dim_lon, dim_lat, dim_time), -9999) var_lsm <- ncvar_def("lsm", "1", list(dim_lon, dim_lat, dim_time), -9999) # Create the file ncout <- nc_create(outfile, list(var_t2m, var_d2m, var_sp, var_u10, var_v10, var_tp, var_tcc, var_msnlwrf, var_msdwlwrf, var_fdir, var_ssrd, var_lsm)) # Write data to the new file ncvar_put(ncout, var_t2m, t2m) ncvar_put(ncout, var_d2m, d2m) ncvar_put(ncout, var_sp, sp) ncvar_put(ncout, var_u10, u10) ncvar_put(ncout, var_v10, v10) ncvar_put(ncout, var_tp, tp) ncvar_put(ncout, var_tcc, tcc) ncvar_put(ncout, var_msnlwrf, msnlwrf) ncvar_put(ncout, var_msdwlwrf, msdwlwrf) ncvar_put(ncout, var_fdir, fdir) ncvar_put(ncout, var_ssrd, ssrd) ncvar_put(ncout, var_lsm, lsm) # Define and write longitude and latitude variables ncvar_put(ncout, "longitude", lons) ncvar_put(ncout, "latitude", lats) ncatt_put(ncout, "longitude", "units", "degrees_east") ncatt_put(ncout, "latitude", "units", "degrees_north") # Define and write time variable ncvar_put(ncout, "time", time) ncatt_put(ncout, "time", "units", "hours since 1900-01-01 00:00:00") ncatt_put(ncout, "time", "calendar", "gregorian") # Global attributes ncatt_put(ncout, 0, "title", paste0("ERA5 reanalysis data for ", year)) ncatt_put(ncout, 0, "source", "ECMWF ERA5") # Close the NetCDF file nc_close(ncout) } # Example usage: outfile <- paste0(pathtoera5, "era5_reanalysis_", year, ".nc") combine_era5_yearly(year, pathtoera5, outfile) #HERE IS THE REST OF THE CODE WHICH REQUIRES THE YEARLY FILE #' Process Hourly Climate Data >>> file <- paste0(pathtoera5,"era5_reanalysis_",year,".nc") clim <- nc_open(file) #' create a template to crop input dataset to for step 2: '02_VegParms.R' test <- raster::brick(file, varname = "t2m") t_array <- as.array(test[[1]]) ext_r <- ext(raster::extent(test)) r <- rast(t_array, crs = "EPSG:4326", ext = ext_r) #' Get coordinates & time: lons <- ncdf4::ncvar_get(clim, varid = "longitude") lats <- ncdf4::ncvar_get(clim, varid = "latitude") time <- ncdf4::ncvar_get(clim, "time") x_dim <- length(lons) y_dim <- length(lats) z_dim <- length(time) #' Assign a local timezone: tmz <- lutz::tz_lookup_coords(lats[length(lats)/2], lons[length(lons)/2], method = 'fast') origin <- as.POSIXlt("1900-01-01 00:00:00", tz = "UTC") UTC_tme <- origin + as.difftime(time, units = "hours") UTC_tme <- as.POSIXlt(UTC_tme, tz = "UTC") local_tme <- lubridate::with_tz(UTC_tme, tzone = tmz) jd <- microctools::jday(tme = UTC_tme) lt <- local_tme$hour + local_tme$min/60 + local_tme$sec/3600 #' Create empty climate variable arrays: #' These are 3-D arrays with time (hours) in the 3rd dimension. t_a <- array(data = NA, c(y_dim, x_dim, z_dim)) t_sh <- array(data = NA, c(y_dim, x_dim, z_dim)) t_pa <- array(data = NA, c(y_dim, x_dim, z_dim)) t_ws <- array(data = NA, c(y_dim, x_dim, z_dim)) t_wd <- array(data = NA, c(y_dim, x_dim, z_dim)) t_se <- array(data = NA, c(y_dim, x_dim, z_dim)) t_nl <- array(data = NA, c(y_dim, x_dim, z_dim)) t_ul <- array(data = NA, c(y_dim, x_dim, z_dim)) t_dl <- array(data = NA, c(y_dim, x_dim, z_dim)) t_rd <- array(data = NA, c(y_dim, x_dim, z_dim)) t_rdf <- array(data = NA, c(y_dim, x_dim, z_dim)) t_sz <- array(data = NA, c(y_dim, x_dim, z_dim)) p_a <- array(data = NA, c(y_dim, x_dim, length(local_tme)/24)) # note: rainfall recorded daily. #' Fill empty arrays with processed era5 data: #' Use the 'extract_clim' function from the mcera5 package to convert era5 data to microclimf-ready data. for(i in 1:y_dim){ # for each row in the new array. for(j in 1:x_dim){ # for each column in the new array. long <- lons[j] lat <- lats[i] climate <- extract_clim(file, long, lat, start_time = UTC_tme[1], end_time = UTC_tme[length(UTC_tme)]) t_a[i,j,] <- climate$temperature t_sh[i,j,] <- climate$humidity t_pa[i,j,] <- climate$pressure t_ws[i,j,] <- climate$windspeed t_wd[i,j,] <- climate$winddir t_se[i,j,] <- climate$emissivity t_nl[i,j,] <- climate$netlong t_ul[i,j,] <- climate$uplong t_dl[i,j,] <- climate$downlong t_rd[i,j,] <- climate$rad_dni t_rdf[i,j,] <- climate$rad_dif t_sz[i,j,] <- climate$szenith } # end column j } # end row i #' Repeat for daily rainfall: #' Use the 'extract_precip' function from the mcera5 package to convert era5 data to microclimf-ready data. for(i in 1:y_dim){ # for each row in the new array. for(j in 1:x_dim){ # for each column in the new array. long <- lons[j] lat <- lats[i] precip <- extract_precip(file, long, lat, start_time = UTC_tme[1], end_time = UTC_tme[length(UTC_tme)]) p_a[i,j,] <- precip } # end column j } # end row i #' Additional processing for microclimf inputs: #' Calculate Solar Index... si <- array(data = NA, dim = c(y_dim, x_dim, z_dim)) for(a in 1:nrow(si)){ for(b in 1:ncol(si)){ x <- lons[b] y <- lats[a] s = microclima::siflat(lubridate::hour(local_tme), y, x, jd) si[a,b,] <- s } } #' Calculate Global Horizontal Irradiance (GHI) from Direct Normal Irradiance (DNI) #' and convert units from MJh/m^2 to kWh/m^2 raddr <- (t_rd * si)/0.0036 difrad <- t_rdf/0.0036 #' Cap diffuse radiation data (Cannot be less than 0) difrad[difrad < 0] <- 0 #' Calculate shortwave radiation: #' Sum Global Horizontal Irradiance (GHI) and Diffuse Radiation. swrad <- raddr + difrad #' Cap shortwave radiation between 0 > sw < 1350 (lower than the solar constant) swrad[swrad < 0] <- 0 swrad[swrad > 1350] <- 1350 #' Calculate relative humidity #' Using specific humidity, temperature and pressure. t_rh <- array(data = NA, c(y_dim, x_dim, z_dim)) for(i in 1:nrow(t_rh)){ for(j in 1:ncol(t_rh)){ rh <- microclima::humidityconvert(t_sh[i,j,],intype = "specific", tc = t_a[i,j,], p = t_pa[i,j,]) rh <- rh$relative rh[rh > 100] <- 100 t_rh[i,j,] <- rh } } #' Convert pressure untis from Pa to kPa: t_pr <- t_pa/1000 #' Create final climate data set to drive microclimate model: #' Note: keep the nomenclature as shown here for microclimf, see microclimf::climdat for example names. climdat <- list(tme = local_tme, obs_time = UTC_tme, temp = t_a, relhum = t_rh, pres = t_pr, swrad = swrad, difrad = difrad, skyem = t_se, windspeed = t_ws, winddir = t_wd) #' Save data: pathout <- "F:/Dat/era5/" saveRDS(climdat, paste0(pathout,"climdat_",year,".RDS")) saveRDS(p_a, paste0(pathout,"rainfall_",year,".RDS")) tile_no <- "01" writeRaster(r, paste0(pathout,"tile_",tile_no,".tif")) #HERE IS ADDITIONAL INFORMATION ON ONE MONTHLY NC FILE: 12 variables (excluding dimension variables): short t2m[longitude,latitude,time] scale_factor: 0.000250859493618673 add_offset: 301.508114316347 _FillValue: -32767 missing_value: -32767 units: K long_name: 2 metre temperature short d2m[longitude,latitude,time] scale_factor: 0.000189842033307647 add_offset: 296.056545703983 _FillValue: -32767 missing_value: -32767 units: K long_name: 2 metre dewpoint temperature short sp[longitude,latitude,time] scale_factor: 0.0470135275357454 add_offset: 96477.3202432362 _FillValue: -32767 missing_value: -32767 units: Pa long_name: Surface pressure standard_name: surface_air_pressure short u10[longitude,latitude,time] scale_factor: 0.000152449582891444 add_offset: 0.590744087708554 _FillValue: -32767 missing_value: -32767 units: m s**-1 long_name: 10 metre U wind component short v10[longitude,latitude,time] scale_factor: 0.00013693746249206 add_offset: 0.66616840871016 _FillValue: -32767 missing_value: -32767 units: m s**-1 long_name: 10 metre V wind component short tp[longitude,latitude,time] scale_factor: 2.85070516901134e-07 add_offset: 0.00934062055678257 _FillValue: -32767 missing_value: -32767 units: m long_name: Total precipitation short tcc[longitude,latitude,time] scale_factor: 1.52594875864068e-05 add_offset: 0.499992370256207 _FillValue: -32767 missing_value: -32767 units: (0 - 1) long_name: Total cloud cover standard_name: cloud_area_fraction short msnlwrf[longitude,latitude,time] scale_factor: 0.00173717121168915 add_offset: -56.7456195621683 _FillValue: -32767 missing_value: -32767 units: W m**-2 long_name: Mean surface net long-wave radiation flux short msdwlwrf[longitude,latitude,time] scale_factor: 0.0012878582820392 add_offset: 410.789761344296 _FillValue: -32767 missing_value: -32767 units: W m**-2 long_name: Mean surface downward long-wave radiation flux short fdir[longitude,latitude,time] scale_factor: 46.9767598004059 add_offset: 1539240.5116201 _FillValue: -32767 missing_value: -32767 units: J m**-2 long_name: Total sky direct solar radiation at surface short ssrd[longitude,latitude,time] scale_factor: 54.2183022294111 add_offset: 1776516.89084889 _FillValue: -32767 missing_value: -32767 units: J m**-2 long_name: Surface short-wave (solar) radiation downwards standard_name: surface_downwelling_shortwave_flux_in_air short lsm[longitude,latitude,time] scale_factor: 9.55416624213488e-06 add_offset: 0.686938634743966 _FillValue: -32767 missing_value: -32767 units: (0 - 1) long_name: Land-sea mask standard_name: land_binary_mask 3 dimensions: longitude Size:21 units: degrees_east long_name: longitude latitude Size:16 units: degrees_north long_name: latitude time Size:744 units: hours since 1900-01-01 00:00:00.0 long_name: time calendar: gregorian 2 global attributes:... ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.