On Mon, 07 Aug 2023, Naresh Gurbuxani writes: > I have two dataframes, each with a column for timestamp. I want to > merge the two dataframes such that each row from first dataframe > is matched with the row in the second dataframe with most recent but > preceding timestamp. Here is an example. > > option.trades <- data.frame(timestamp = as.POSIXct(c("2023-08-07 10:23:22", > "2023-08-07 10:25:33", "2023-08-07 10:28:41")), option.price = c(2.5, 2.7, > 1.8)) > > stock.trades <- data.frame(timestamp = > as.POSIXct(c("2023-08-07 10:23:21", "2023-08-07 > 10:23:34", "2023-08-07 10:24:57", "2023-08-07 > 10:28:37", "2023-08-07 10:29:01")), stock.price = > c(102.2, 102.9, 103.1, 101.8, 101.7)) > > stock.trades <- stock.trades[order(stock.trades$timestamp),] > > library(plyr) > mystock.prices <- ldply(option.trades$timestamp, function(tstamp) > tail(subset(stock.trades, timestamp <= tstamp), 1)) > names(mystock.prices)[1] <- "stock.timestamp" > myres <- cbind(option.trades, mystock.prices) > > This method works. But for large dataframes, it is very slow. Is there > a way to speed up the merge? > > Thanks, > Naresh >
If the timestamps are sorted (or you can sort them), function ?findInterval might be helpful: i <- findInterval(option.trades$timestamp, stock.trades$timestamp) cbind(option.trades, stock.trades[i, ]) ## timestamp option.price timestamp stock.price ## 1 2023-08-07 10:23:22 2.5 2023-08-07 10:23:21 102.2 ## 3 2023-08-07 10:25:33 2.7 2023-08-07 10:24:57 103.1 ## 4 2023-08-07 10:28:41 1.8 2023-08-07 10:28:37 101.8 -- Enrico Schumann Lucerne, Switzerland http://enricoschumann.net ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.