Hi all R-Help , After partitioning my data to testing and training (please see below), I need to estimate the Sensitivity and Specificity. I failed. It would be appropriate to get your help.
Best regards, Greg inTrain <- createDataPartition(y=data$case, p=0.7, list=FALSE) training <- data[ inTrain,] testing <- data[-inTrain,] attach(training) #model training and prediction data_training <- glm(case ~ age+BMI+Calcium+Albumin+meno_1, data = training, family = binomial(link="logit")) predict <- predict(data_training, data_predict = testing, type = "response") predict_testing <- ifelse(predict > 0.5,1,0) # Sensitivity and Specificity sensitivity<-(predict_testing[2,2]/(predict_testing[2,2]+predict_testing[2,1]))*100 sensitivity specificity<-(predict_testing[1,1]/(predict_testing[1,1]+predict_testing[1,2]))*100 specificity [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.