Good day colleagues. Below is a csv file attached which i am using in my > analysis. > > > > household.id <http://hh.id> > > hd17.perm > > hd17employ > > health.exp > > total.food.exp > > total.nfood.exp > > 1 > > 2 > > yes > > 1654 > > 23654 > > 23655 > > 2 > > 2 > > yes > > NA > > NA > > 65984 > > 3 > > 6 > > no > > 2547 > > 123311 > > 52416 > > 4 > > 8 > > NA > > 2365 > > 13648 > > 12544 > > 5 > > 6 > > NA > > 1254 > > 36549 > > 12365 > > 6 > > 8 > > yes > > 1236 > > 236541 > > 26522 > > 7 > > 8 > > no > > NA > > 13264 > > 23698 > > > > > > So I created a df using the above and its a csv file as follows > > wbpractice <- read.csv("world_practice.csv") > > Now i am doing data cleaning and trying to replace all missing values with > the averages of the respective columns. > > the dimension of the actual dataset is; > > dim(wbpractice) [1] 31998 6
I used the following script which i executed by i got some error messages for(i in 1:ncol( wbpractice )){ wbpractice [is.na( wbpractice [,i]), i] <- mean( wbpractice [,i], na.rm = TRUE) } Any help to replace all NAs with average values in my dataframe? > >> [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.