Dear R-experts, I am trying to get the 8 graphs like the ones in this paper : https://statweb.stanford.edu/~tibs/reshef/comment.pdf My R code does not show any error message neither warnings but I d'on't get what I would like to get (I mean the 8 graphs), so I am missing something. What's it ? Many thanks for your precious help.
################# set.seed(1) library(energy) # Here we define parameters which we use to simulate the data # The number of null datasets we use to estimate our rejection reject #regions for an alternative with level 0.05 nsim=50 # Number of alternative datasets we use to estimate our power nsim2=50 # The number of different noise levels used num.noise <- 30 # A constant to determine the amount of noise noise <- 3 # Number of data points per simulation n=100 # Vectors holding the null "correlations" (for pearson, for spearman, for kendall and dcor respectively) for each # of the nsim null datasets at a #given noise level val.cor=val.cors=val.cork=val.dcor=rep(NA,nsim) # Vectors holding the alternative "correlations" (for pearson, for #spearman, for kendall and dcor respectively) #for each of the nsim2 alternative datasets at a given noise level val.cor2=val.cors2=val.cork2=val.dcor2= rep(NA,nsim2) # Arrays holding the estimated power for each of the 4 "correlation" types, for each data type (linear, #parabolic, etc...) with each noise level power.cor=power.cors=power.cork=power.dcor= array(NA, c(8,num.noise)) ## We loop through the noise level and functional form; each time we #estimate a null distribution based on #the marginals of the data, and then #use that null distribution to estimate power ## We use a uniformly distributed x, because in the original paper the #authors used the same for(l in 1:num.noise) { for(typ in 1:8) { ## This next loop simulates data under the null with the correct marginals (x is uniform, and y is a function of a #uniform with gaussian noise) for(ii in 1:nsim) { x=runif(n) #lin+noise if(typ==1) { y=x+ noise *(l/num.noise)* rnorm(n) } #parabolic+noise if(typ==2) { y=4*(x-.5)^2+ noise * (l/num.noise) * rnorm(n) } #cubic+noise if(typ==3) { y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise * (l/num.noise) *rnorm(n) } #sin+noise if(typ==4) { y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n) } #their sine + noise if(typ==5) { y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n) } #x^(1/4) + noise if(typ==6) { y=x^(1/4) + noise * (l/num.noise) *rnorm(n) } #circle if(typ==7) { y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise *rnorm(n) } #step function if(typ==8) { y = (x > 0.5) + noise*5*l/num.noise *rnorm(n) } # We resimulate x so that we have the null scenario x <- runif(n) # Calculate the 4 correlations val.cor[ii]=(cor(x,y)) val.cors[ii]=(cor(x,y,method=c("spearman"))) val.cork[ii]=(cor(x,y,method=c("kendal"))) val.dcor[ii]=dcor(x,y) } ## Next we calculate our 4 rejection cutoffs cut.cor=quantile(val.cor,.95) cut.cors=quantile(val.cors,.95) cut.cork=quantile(val.cork,.95) cut.dcor=quantile(val.dcor,.95) ## Next we simulate the data again, this time under the alternative for(ii in 1:nsim2) { x=runif(n) #lin+noise if(typ==1) { y=x+ noise *(l/num.noise)* rnorm(n) } #parabolic+noise if(typ==2) { y=4*(x-.5)^2+ noise * (l/num.noise) * rnorm(n) } #cubic+noise if(typ==3) { y=128*(x-1/3)^3-48*(x-1/3)^3-12*(x-1/3)+10* noise * (l/num.noise) *rnorm(n) } #sin+noise if(typ==4) { y=sin(4*pi*x) + 2*noise * (l/num.noise) *rnorm(n) } #their sine + noise if(typ==5) { y=sin(16*pi*x) + noise * (l/num.noise) *rnorm(n) } #x^(1/4) + noise if(typ==6) { y=x^(1/4) + noise * (l/num.noise) *rnorm(n) } #circle if(typ==7) { y=(2*rbinom(n,1,0.5)-1) * (sqrt(1 - (2*x - 1)^2)) + noise/4*l/num.noise *rnorm(n) } #step function if(typ==8) { y = (x > 0.5) + noise*5*l/num.noise *rnorm(n) } ## We again calculate our 4 "correlations" val.cor2[ii]=(cor(x,y)) val.cors2[ii]=(cor(x,y,method=c("spearman"))) val.cork2[ii]=(cor(x,y,method=c("kendal"))) val.dcor2[ii]=dcor(x,y) } ## Now we estimate the power as the number of alternative statistics #exceeding our estimated cutoffs power.cor[typ,l] <- sum(val.cor2 > cut.cor)/nsim2 power.cors[typ,l] <- sum(val.cors2 > cut.cor)/nsim2 power.cork[typ,l] <- sum(val.cork2 > cut.cor)/nsim2 power.dcor[typ,l] <- sum(val.dcor2 > cut.dcor)/nsim2 } } save.image() ## The rest of the code is for plotting the image pdf("power.pdf") par(mfrow = c(4,2), cex = 0.45) plot((1:30)/10, power.cor[1,], ylim = c(0,1), main = "Linear", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[1,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[1,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[1,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[2,], ylim = c(0,1), main = "Quadratic", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[2,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[2,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[2,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[3,], ylim = c(0,1), main = "Cubic", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[3,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[3,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[3,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[5,], ylim = c(0,1), main = "Sine: period 1/8", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[5,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[5,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[5,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[4,], ylim = c(0,1), main = "Sine: period 1/2", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[4,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[4,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[4,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[6,], ylim = c(0,1), main = "X^(1/4)", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[6,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[6,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[6,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[7,], ylim = c(0,1), main = "Circle", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[7,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[7,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[7,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) plot((1:30)/10, power.cor[8,], ylim = c(0,1), main = "Step function", xlab = "Noise Level", ylab = "Power", pch = 1, col = "black", type = 'b') points((1:30)/10, power.cors[8,], pch = 2, col = "green", type = 'b') points((1:30)/10, power.cork[8,], pch = 3, col = "blue", type = 'b') points((1:30)/10, power.dcor[8,], pch = 4, col = "red", type = 'b') legend("topright",c("cor pearson","cor spearman", "cor kendal","dcor"), pch = c(1,2,3), col = c("black","green","blue","red")) ################# ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.