Dear all, I am using optim() to estimate unknown parameters by minimizing the residual sums of squares. I created a function with the model. The model is working fine. The optim function is producing negative parameter values, even I have introduced upper and lower bounds (given in code). Therefore, the model produces *NAs*.
Following is my code. param <<- c(0.002,0.002, 0.14,0.012,0.01,0.02, 0.03, 0.001)# initial > parameter values > opt <- optim(param, fn= f.opt, obsdata =obsdata_10000, method= "L-BFGS-B", > lower = c(0.001, 0.001, 0.08,0.008, 0.009, 0.008, 0.009, 0.001), upper = c(0.00375, 0.002, 0.2, 0.018, 0.08, 0.08, 0.08, 0.01), > control=list(maxit=10), hessian = T) Error: *"NAs producedError in if (rnd_1 < liferisk) { : missing value where TRUE/FALSE needed "* The model function which produces NA due to negative parameter values liferisk <- rnorm(n = 1, mean = (calib_para[which(names(calib_para)=="r_mu")]),sd = (calib_para[which(names(calib_para)=="r_sd")])) rnd_1 <- runif(1, 0, 1) if (rnd_1 < liferisk) { ca_case <- 1} else {ca_case <- 0} How to design/ modify optim() function, and upper-lower bounds to stop producing negative values during parameter search? Thanks Best regards, Shah [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.