Hi Ana, I would look at "data" in your second example and see if it contains a column named "blup" or just the values that were extracted from a$blup. Also, I assume that weight=blup looks for an object named "blup", which may not be there.
Jim On Wed, Dec 16, 2020 at 1:20 PM Ana Marija <sokovic.anamar...@gmail.com> wrote: > > Hi Jim, > > Maybe my post is confusing. > > so "dd" came from my slow code and I don't use it again in parallelized code. > > So for example for one of my files: > > if > i="retina.ENSG00000120647.wgt.RDat" > > a <- get(load(i)) > > head(a) > top1 blup lasso enet > rs4980905:184404:C:A 0.07692622 -1.881795e-04 0 0 > rs7978751:187541:G:C 0.62411425 9.934994e-04 0 0 > rs2368831:188285:C:T 0.69529158 1.211028e-03 0 0 > ... > > Slow code was posted just to show what was running very slow and it > was running. I really need help fixing parallelized version. > > On Tue, Dec 15, 2020 at 7:35 PM Jim Lemon <drjimle...@gmail.com> wrote: > > > > Hi Ana, > > My guess is that in your second code fragment you are assigning the > > rownames of "a" and the _values_ contained in a$blup to the data.table > > "data". As I don't have much experience with data tables I may be > > wrong, but I suspect that the column name "blup" may not be visible or > > even present in "data". I don't see it in "dd" above this code > > fragment. > > > > Jim > > > > On Wed, Dec 16, 2020 at 11:12 AM Ana Marija <sokovic.anamar...@gmail.com> > > wrote: > > > > > > Hello, > > > > > > I made a terribly inefficient code which runs forever but it does run. > > > > > > library(dplyr) > > > library(splitstackshape) > > > > > > datalist = list() > > > files <- list.files("/WEIGHTS1/Retina", pattern=".RDat", ignore.case=T) > > > > > > for(i in files) > > > { > > > a<-get(load(i)) > > > names <- rownames(a) > > > data <- as.data.frame(cbind(names,a)) > > > rownames(data) <- NULL > > > dd=na.omit(concat.split.multiple(data = data, split.cols = c("names"), > > > seps = ":")) > > > dd=select(dd,names_1,blup,names_3,names_4) > > > colnames(dd)=c("rsid","weight","ref_allele","eff_allele") > > > dd$WGT<-i > > > datalist[[i]] <- dd # add it to your list > > > } > > > > > > big_data = do.call(rbind, datalist) > > > > > > There is 17345 RDat files this loop has to go through. And each file > > > has approximately 10,000 lines. All RDat files can be downloaded from > > > here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115828 and > > > they are compressed in this file: GSE115828_retina_TWAS_wgts.tar.gz . > > > And subset of 3 of those .RDat files is here: > > > https://github.com/montenegrina/sample > > > > > > For one of those files, say i="retina.ENSG00000135776.wgt.RDat" > > > dd looks like this: > > > > > > > head(dd) > > > rsid weight ref_allele eff_allele > > > 1: rs72763981 9.376766e-09 C G > > > 2: rs144383755 -2.093346e-09 A G > > > 3: rs1925717 1.511376e-08 T C > > > 4: rs61827307 -1.625302e-08 C A > > > 5: rs61827308 -1.625302e-08 G C > > > 6: rs199623136 -9.128354e-10 GC G > > > WGT > > > 1: retina.ENSG00000135776.wgt.RDat > > > 2: retina.ENSG00000135776.wgt.RDat > > > 3: retina.ENSG00000135776.wgt.RDat > > > 4: retina.ENSG00000135776.wgt.RDat > > > 5: retina.ENSG00000135776.wgt.RDat > > > 6: retina.ENSG00000135776.wgt.RDat > > > > > > so on attempt to parallelize this I did this: > > > > > > library(parallel) > > > library(data.table) > > > library(foreach) > > > library(doSNOW) > > > > > > n <- parallel::detectCores() > > > cl <- parallel::makeCluster(n, type = "SOCK") > > > doSNOW::registerDoSNOW(cl) > > > files <- list.files("/WEIGHTS1/Retina", pattern=".RDat", ignore.case=T) > > > > > > lst_out <- foreach::foreach(i = seq_along(files), > > > .packages = c("data.table") ) %dopar% { > > > > > > a <- get(load(files[i])) > > > names <- rownames(a) > > > data <- data.table(names, a["blup"]) > > > nm1 <- c("rsid", "ref_allele", "eff_allele") > > > data[, (nm1) := tstrsplit(names, ":")[-2]] > > > return(data[, .(rsid, weight = blup, ref_allele, eff_allele)][, > > > WGT := files[i]][]) > > > } > > > parallel::stopCluster(cl) > > > > > > big_data <- rbindlist(lst_out) > > > > > > I am getting this Error: > > > > > > Error in { : task 7 failed - "object 'blup' not found" > > > > parallel::stopCluster(cl) > > > > > > Can you please advise, > > > Ana > > > > > > ______________________________________________ > > > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > > > https://stat.ethz.ch/mailman/listinfo/r-help > > > PLEASE do read the posting guide > > > http://www.R-project.org/posting-guide.html > > > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.