Hello, I am trying to fit a Richards model to some cumulative incidence data of infection. I got this example: ``` rich = function(p, x) { a = p["curvature"] k = p["finalPop"] r = p["growthRate"] y = r * x * (1-(x/k)^a) return(y) } ricky = function(p, x, y) p$r * x * (1-(x/p$k)^p$a) -y # values Y <- c(41, 41, 41, 41, 41, 41, 45, 62, 121, 198, 275, 288, 859, 1118) X <- 1:14 a = 1 k = 83347 r = 40 fit = rich(c(curvature=a, finalPop=k, growthRate=r), X) plot(Y ~ X, col = "red", lwd = 2, main = "Richards model", xlab = expression(bold("Days")), ylab = expression(bold("Cases"))) points(X, fit, type = "l", lty = 2, lwd = 2) library("minpack.lm") o <- nls.lm(par = list(a=a, k=k, r=r), fn = ricky, x = X, y = Y) summary(o) ``` When I run the optimization (given that I can't find parameters that fit the data by eyeball), I get the error: ``` Error in chol.default(object$hessian) : the leading minor of order 1 is not positive definite ``` What is this about? Thank you
-- Best regards, Luigi ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.