Dear R-experts, My reproducible example here below is not working because of an error message : Erreur : vecteurs de mémoire épuisés (limite atteinte ?) My code perfectly works when n=3000 or n=5000 but as soon as n=10000 my code does not work anymore. By the way, my code takes a very long time to run. How can I solve my 2 problems : - Is there a way to make my code run much faster ? - Is there a way to make my code work for n=10000 ?
Here is my sessionInfo sessionInfo() R version 3.6.1 (2019-07-05) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS Sierra 10.12.6 Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib Random number generation: RNG: Mersenne-Twister Normal: Inversion Sample: Rounding locale: [1] fr_CH.UTF-8/fr_CH.UTF-8/fr_CH.UTF-8/C/fr_CH.UTF-8/fr_CH.UTF-8 attached base packages: [1] splines stats graphics grDevices utils datasets methods base other attached packages: [1] remotes_2.1.0 RobStatTM_1.0.1 fit.models_0.5-14 hbrfit_0.02 Rfit_0.23.0 RobPer_1.2.2 rgenoud_5.8-3.0 [8] BB_2019.10-1 quantreg_5.51 SparseM_1.77 MASS_7.3-51.4 robustbase_0.93-5 loaded via a namespace (and not attached): [1] quadprog_1.5-7 lattice_0.20-38 grid_3.6.1 MatrixModels_0.4-1 curl_4.0 Matrix_1.2-17 tools_3.6.1 [8] DEoptimR_1.0-8 compiler_3.6.1 # # # # # # # # # # # # # install.packages( "robustbase",dependencies=TRUE ) install.packages( "MASS" ,dependencies=TRUE ) install.packages( "quantreg" ,dependencies=TRUE ) install.packages( "RobPer",dependencies=TRUE ) install.packages("remotes") remotes::install_github("kloke/hbrfit") install.packages( "RobStatTM",dependencies=TRUE ) library(robustbase) library(MASS) library(quantreg) library(RobPer) library(hbrfit) library(RobStatTM) library("remotes") my.experiment <- function() { n<-10000 b<-runif(n, 0, 5) z <- rnorm(n, 2, 3) a <- runif(n, 0, 5) y_model<- 0.1*b - 0.5 * z - a + 10 y_obs <- y_model +c( rnorm(n*0.9, 0, 0.1), rnorm(n*0.1, 0, 0.5) ) HBR<-hbrfit(y_obs ~ b+z+a) x<-model.matrix(~b+z+a) y<-y_obs fastTau <- FastTau(x=x, y=y) w<-as.vector(x %*% fastTau$beta) MSE_fastTau<-mean((w - y_model)^2) MSE_HBR<-mean((HBR$fitted.values - y_model)^2) return( c(MSE_fastTau,MSE_HBR) ) } my.data = t(replicate( 10, my.experiment() )) colnames(my.data) <- c("MSE_fastTau","MSE_HBR") summary(my.data) # # # # # # # # # # # # # ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.