Hi Phillip, I wanted to follow up with you regarding your earlier post. Below is a different way to work up your data than I posted earlier.
I took the baseball data you posted, stripped out leading-and-following blank lines, removed all trailing spaces on each line, and removed the "R1", "R2" and "R3" column names, since they're blank columns anyway. I then read this text file ("diamond2.txt") into R using the read.table() call below. Note the use of the sep=" " parameter--it is very important to include this parameter when analyzing your dataset in R, as it is not the default setting. I was then able to generate the "R1", "R2", "R3" columns you sought, using apply() with anonymous functions: > testAD <- read.table("diamond2.txt", header=T, sep=" ", na.strings="", > fill=T, row.names=NULL, stringsAsFactors=F) > testAD$R1=rep(NA, 14) > testAD$R2=rep(NA, 14) > testAD$R3=rep(NA, 14) > testAD[ ,c(6:8)] <- apply(testAD[ ,c(3:5)], 2, FUN=function(x) > {ifelse(test=nchar(x), yes=1, no=0)} ) > testAD[ ,c(6:8)] <- apply(testAD[ ,c(6:8)], 2, FUN=function(x) > {ifelse(test=!is.na(x), yes=x, no=0)} ) > testAD Row Outs RunnerFirst RunnerSecond RunnerThird R1 R2 R3 1 1 0 <NA> <NA> <NA> 0 0 0 2 2 1 <NA> <NA> <NA> 0 0 0 3 3 1 <NA> <NA> <NA> 0 0 0 4 4 1 arenn001 <NA> <NA> 1 0 0 5 5 2 arenn001 <NA> <NA> 1 0 0 6 6 0 <NA> <NA> <NA> 0 0 0 7 7 0 perad001 <NA> <NA> 1 0 0 8 8 0 polla001 perad001 <NA> 1 1 0 9 9 0 goldp001 polla001 perad001 1 1 1 10 10 0 <NA> lambj001 goldp001 0 1 1 11 11 1 <NA> lambj001 goldp001 0 1 1 12 12 2 <NA> <NA> lambj001 0 0 1 13 13 0 <NA> <NA> <NA> 0 0 0 14 14 1 <NA> <NA> <NA> 0 0 0 > HTH, Bill. W. Michels, Ph.D. On Thu, Oct 24, 2019 at 12:44 PM William Michels <w...@caa.columbia.edu> wrote: > > Hi Phillip, ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.