Hello, I am trying to perform a Kolmogorov–Smirnov test to assess the difference between a distribution and samples drawn proportionally to size of different sizes. I managed to compute the Kolmogorov–Smirnov distance but I am lost with the p-value. I have looked into the ks.test function unsuccessfully. Can anyone help me with computing p-values for a two-tailed test?
Below a simplified version of my code. Thanks in advance. Gianluca library(spatstat) #reference distribution d_1 <- sort(rpois(1000, 500)) p_1 <- d_1/sum(d_1) m_1 <- data.frame(d_1, p_1) #data frame to store the values of the siumation d_stat <- data.frame(1:1000, NA, NA) names(d_stat) <- c("sample_size", "ks_distance", "p_value") #simulation for (i in 1:1000) { #sample from the reference distribution m_2 <-m_1[(sample(nrow(m_1), size=i, prob=p_1, replace=F)),] m_2 <-m_2[order(m_2$d_1),] d_2 <- m_2$d_1 p_2 <- m_2$p_1 #weighted ecdf for the reference distribution and the sample f_d_1 <- ewcdf(d_1, normalise=F) f_d_2 <- ewcdf(d_2, 1/p_2, normalise=F, adjust=1/length(d_2)) #kolmogorov-smirnov distance d_stat[i,2] <- max(abs(f_d_1(d_2) - f_d_2(d_2))) } [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.