First I estimated the parameters of exponentiated generalized normal 
distribution using the dataset (data1: generated from normal distribution). 
Then I used real dataset (data2) and tried to find the maximum likelihood 
estimates (MLE) using the AdequacyModel packages. It gives the error message 
(mentioned right below the code). 
Why does the same code estimate for first dataset (data1), but it doesn't 
estimate for the second dataset (data2)?
Is my way of plugging the baseline distribution (normal) in generalized class 
of distributions F(x)= [1-(1-G(x))^beta]^gamma introduced by Cordeiro et 
al.(2013) in R environment right? Am I defining the cdf and pdf of an 
generalized normal distribution in R in right way?

# First Problem

library(AdequacyModel)

data1 <- rnorm(100)

pdf_exps <- function(par,x){
beta = par[1]
gamma= par[2]
mean = par[3]
sd = par[4]
             ( beta*gamma* ((1-(1-(pnorm(x,mean,sd)))^beta)^(gamma-1)) * 
((1-(pnorm(x,mean,sd)))^(beta-1)) ) * (dnorm(x,mean,sd)) 
}


cdf_exps <- function(par,x){
beta = par[1]
gamma= par[2]
mean = par[3]
sd = par[4]
( 1-(1-(pnorm(x,mean,sd)))^beta)^gamma 
}


set.seed(1)
result_1 = goodness.fit(pdf = pdf_exps, cdf = cdf_exps,
starts = c(1,1,1,1),data = data1  , method = "BFGS",
domain = c(-Inf,Inf), lim_inf = c(0,0,0,0),
lim_sup = c(2,2,2,2), S = 250, prop=0.1, N=50)
result_1$mle

 5.688120 4.413153 1.115777 1.996108

#----------------------------------------

data2 <-c( 20.56, 20.67, 21.86, 21.88, 18.96, 21.04, 21.69, 20.62, 22.64, 
19.44, 25.75, 21.20,
  22.03, 25.44, 22.63, 21.86, 22.27, 21.27, 23.47, 23.19, 23.17, 24.54, 22.96, 
19.76,
  23.36, 22.67, 24.24, 24.21, 20.46, 20.81, 20.17, 23.06, 24.40, 23.97, 22.62, 
19.16,
  21.15, 21.40, 21.03, 21.77, 21.38, 21.47, 24.45, 22.63, 22.80, 23.58, 20.06, 
23.01,
  24.64, 18.26, 24.47, 23.99, 26.24, 20.04, 25.72, 25.64, 19.87, 23.35, 22.42, 
20.42,
  22.13, 25.17, 23.72, 21.28, 20.87, 19.00, 22.04, 20.12, 21.35, 28.57, 26.95, 
28.13,
  26.85, 25.27, 31.93, 16.75, 19.54, 20.42, 22.76, 20.12, 22.35, 19.16, 20.77, 
19.37,
  22.37, 17.54, 19.06, 20.30, 20.15, 25.36, 22.12, 21.25, 20.53, 17.06, 18.29, 
18.37,
  18.93, 17.79, 17.05, 20.31, 22.46, 23.88, 23.68, 23.15, 22.32, 24.02, 23.29, 
25.11,
 22.81, 26.25, 21.38, 22.52, 26.73, 23.57, 25.84, 24.06, 23.85, 25.09, 23.84, 
25.31,
 19.69, 26.07, 25.50, 23.69, 26.79, 25.61, 25.06, 24.93, 22.96, 20.69, 23.97, 
24.64,
 25.93, 23.69, 25.38, 22.68, 23.36, 22.44, 22.57, 19.81, 21.19, 20.39, 21.12, 
21.89,
 29.97, 27.39, 23.11, 21.75, 20.89, 22.83, 22.02, 20.07, 20.15, 21.24, 19.63, 
23.58,
 21.65, 25.17, 23.25, 32.52, 22.59, 30.18, 34.42, 21.86, 23.99, 24.81, 21.68, 
21.04,
 23.12, 20.76, 23.13, 22.35, 22.28, 23.55, 19.85, 26.51, 24.78, 33.73, 30.18, 
23.31,
 24.51, 25.37, 23.67, 24.28, 25.82, 21.93, 23.38, 23.07, 25.21, 23.25, 22.93, 
26.86,
 21.26, 25.43, 24.54, 27.79, 23.58, 27.56, 23.76, 22.01, 22.34, 21.07)


set.seed(1)
result_2 = goodness.fit(pdf = pdf_exps, cdf = cdf_exps,
starts = c(1,1,1,1),data = data2  , method = "BFGS",
domain = c(-Inf,Inf), lim_inf = c(0,0,0,0),
lim_sup = c(2,2,2,2), S = 250, prop=0.1, N=50)
result_2$mle

Error in optim(par = starts, fn = likelihood, x = data, method = "BFGS",  : 
  non-finite finite-difference value [1]


JAWAD HUSSAIN ASHRAF

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to