Hello
I successfully installed keras and TensorFlow backend with install_keras(). I 
attached the installation log as keras_install_log.txt. After that I tried to 
download mnist data with dataset_mnist() function. However I got the following 
error message:
#----------------------------------------------------------------------------
> library(keras)
> mnist <- dataset_mnist()
Using TensorFlow backend.
Error: ImportError: Traceback (most recent call last):
  File 
"C:\Users\user\MINICO~1\envs\R-TENS~1\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py",
 line 14, in swig_import_helper    return importlib.import_module(mname)
  File "C:\Users\user\MINICO~1\envs\R-TENS~1\lib\importlib\__init__.py", line 
126, in import_module    return _bootstrap._gcd_import(name[level:], package, 
level)
  File "<frozen importlib._bootstrap>", line 994, in _gcd_import
  File "<frozen importlib._bootstrap>", line 971, in _find_and_load
  File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked
  File "<frozen importlib._bootstrap>", line 658, in _load_unlocked
  File "<frozen importlib._bootstrap>", line 571, in module_from_spec
  File "<frozen importlib._bootstrap_external>", line 922, in create_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
ImportError: DLL load failed with error code -1073741795

During handling of the above exce
#---------------------------------------------------------------------------------------

I also attached the error message as error_message.txt
How can I fix this problem.
Thanks

> library(keras)
> install_keras()
Creating r-tensorflow conda environment for TensorFlow installation...
Fetching package metadata .............
Solving package specifications: .

Package plan for installation in environment 
C:\Users\user\MINICO~1\envs\r-tensorflow:

The following NEW packages will be INSTALLED:

    certifi:        2019.3.9-py36_0       
    pip:            19.0.3-py36_0         
    python:         3.6.8-h9f7ef89_7      
    setuptools:     40.8.0-py36_0         
    sqlite:         3.27.2-he774522_0     
    vc:             14.1-h0510ff6_4       
    vs2015_runtime: 14.15.26706-h3a45250_0
    wheel:          0.33.1-py36_0         
    wincertstore:   0.2-py36h7fe50ca_0    

vs2015_runtime 100% |###############################| Time: 0:00:05 394.52 kB/s
vc-14.1-h0510f 100% |###############################| Time: 0:00:00 687.53 kB/s
sqlite-3.27.2- 100% |###############################| Time: 0:00:02 408.91 kB/s
python-3.6.8-h 100% |###############################| Time: 0:00:57 370.52 kB/s
certifi-2019.3 100% |###############################| Time: 0:00:00 463.10 kB/s
setuptools-40. 100% |###############################| Time: 0:00:01 438.73 kB/s
wheel-0.33.1-p 100% |###############################| Time: 0:00:00 493.57 kB/s
pip-19.0.3-py3 100% |###############################| Time: 0:00:04 404.28 kB/s
#
# To activate this environment, use:
# > activate r-tensorflow
#
# To deactivate an active environment, use:
# > deactivate
#
# * for power-users using bash, you must source
#

Fetching package metadata ...............
Solving package specifications: .

Package plan for installation in environment 
C:\Users\user\MINICO~1\envs\r-tensorflow:

The following NEW packages will be INSTALLED:

    absl-py:                 0.7.1-py36_0                  conda-forge
    asn1crypto:              0.24.0-py36_1003              conda-forge
    astor:                   0.7.1-py_0                    conda-forge
    blas:                    1.0-mkl                                  
    ca-certificates:         2019.3.9-hecc5488_0           conda-forge
    cffi:                    1.12.2-py36hb32ad35_1         conda-forge
    chardet:                 3.0.4-py36_1003               conda-forge
    cryptography:            2.5-py36h74b6da3_1            conda-forge
    freetype:                2.10.0-h5db478b_0             conda-forge
    gast:                    0.2.2-py_0                    conda-forge
    grpcio:                  1.16.0-py36hbb4b082_1000      conda-forge
    h5py:                    2.9.0-nompi_py36h3cb27cb_1102 conda-forge
    hdf5:                    1.10.4-nompi_hcc15c50_1106    conda-forge
    icc_rt:                  2019.0.0-h0cc432a_1                      
    idna:                    2.8-py36_1000                 conda-forge
    intel-openmp:            2019.3-203                               
    jpeg:                    9c-hfa6e2cd_1001              conda-forge
    keras:                   2.2.4-py36_0                  conda-forge
    keras-applications:      1.0.4-py_1                    conda-forge
    keras-preprocessing:     1.0.2-py_1                    conda-forge
    libblas:                 3.8.0-4_mkl                   conda-forge
    libcblas:                3.8.0-4_mkl                   conda-forge
    libgpuarray:             0.7.6-hfa6e2cd_1003           conda-forge
    liblapack:               3.8.0-4_mkl                   conda-forge
    libpng:                  1.6.36-h7602738_1000          conda-forge
    libprotobuf:             3.7.0-h1a1b453_2              conda-forge
    libtiff:                 4.0.10-h36446d0_1001          conda-forge
    m2w64-gcc-libgfortran:   5.3.0-6                                  
    m2w64-gcc-libs:          5.3.0-7                                  
    m2w64-gcc-libs-core:     5.3.0-7                                  
    m2w64-gmp:               6.1.0-2                                  
    m2w64-libwinpthread-git: 5.0.0.4634.697f757-2                     
    mako:                    1.0.7-py_1                    conda-forge
    markdown:                2.6.11-py_0                   conda-forge
    markupsafe:              1.1.1-py36hfa6e2cd_0          conda-forge
    mkl:                     2019.1-144                               
    msys2-conda-epoch:       20160418-1                               
    numpy:                   1.16.2-py36h8078771_1         conda-forge
    olefile:                 0.46-py_0                     conda-forge
    openssl:                 1.0.2r-hfa6e2cd_0             conda-forge
    pillow:                  5.4.1-py36h9a613e6_1000       conda-forge
    protobuf:                3.7.0-py36he025d50_0          conda-forge
    pycparser:               2.19-py36_1                   conda-forge
    pygpu:                   0.7.6-py36h452e1ab_1000       conda-forge
    pyopenssl:               19.0.0-py36_0                 conda-forge
    pyreadline:              2.1-py36_1000                 conda-forge
    pysocks:                 1.6.8-py36_1002               conda-forge
    pyyaml:                  5.1-py36hfa6e2cd_0            conda-forge
    requests:                2.21.0-py36_1000              conda-forge
    scipy:                   1.2.1-py36h29ff71c_0                     
    six:                     1.12.0-py36_1000              conda-forge
    tensorboard:             1.10.0-py36_0                 conda-forge
    tensorflow:              1.10.0-py36_0                 conda-forge
    tensorflow-hub:          0.3.0-py_0                    conda-forge
    termcolor:               1.1.0-py_2                    conda-forge
    theano:                  1.0.4-py36h6538335_1000       conda-forge
    tk:                      8.6.9-hfa6e2cd_1001           conda-forge
    urllib3:                 1.24.1-py36_1000              conda-forge
    vs2015_win-64:           14.0.25123-h17c34da_3         conda-forge
    werkzeug:                0.15.1-py_0                   conda-forge
    win_inet_pton:           1.1.0-py36_0                  conda-forge
    yaml:                    0.1.7-hfa6e2cd_1001           conda-forge
    zlib:                    1.2.11-h2fa13f4_1004          conda-forge

blas-1.0-mkl.t 100% |###############################| Time: 0:00:00   1.55 MB/s
ca-certificate 100% |###############################| Time: 0:00:00 431.19 kB/s
icc_rt-2019.0. 100% |###############################| Time: 0:00:24 401.36 kB/s
intel-openmp-2 100% |###############################| Time: 0:00:04 417.10 kB/s
msys2-conda-ep 100% |###############################| Time: 0:00:00 688.33 kB/s
vs2015_win-64- 100% |###############################| Time: 0:00:00 665.22 kB/s
m2w64-gmp-6.1. 100% |###############################| Time: 0:00:01 437.72 kB/s
m2w64-libwinpt 100% |###############################| Time: 0:00:00 492.60 kB/s
mkl-2019.1-144 100% |###############################| Time: 0:07:31 367.54 kB/s
jpeg-9c-hfa6e2 100% |###############################| Time: 0:00:00 435.98 kB/s
libblas-3.8.0- 100% |###############################| Time: 0:00:10 366.87 kB/s
libgpuarray-0. 100% |###############################| Time: 0:00:00 465.30 kB/s
m2w64-gcc-libs 100% |###############################| Time: 0:00:00 425.98 kB/s
openssl-1.0.2r 100% |###############################| Time: 0:00:16 354.42 kB/s
tk-8.6.9-hfa6e 100% |###############################| Time: 0:00:12 307.78 kB/s
yaml-0.1.7-hfa 100% |###############################| Time: 0:00:00 363.30 kB/s
zlib-1.2.11-h2 100% |###############################| Time: 0:00:00 419.65 kB/s
hdf5-1.10.4-no 100% |###############################| Time: 0:01:42 356.79 kB/s
libcblas-3.8.0 100% |###############################| Time: 0:00:09 408.28 kB/s
liblapack-3.8. 100% |###############################| Time: 0:00:09 405.06 kB/s
libpng-1.6.36- 100% |###############################| Time: 0:00:03 416.57 kB/s
libprotobuf-3. 100% |###############################| Time: 0:00:05 416.89 kB/s
libtiff-4.0.10 100% |###############################| Time: 0:00:02 443.01 kB/s
m2w64-gcc-libg 100% |###############################| Time: 0:00:00 452.12 kB/s
asn1crypto-0.2 100% |###############################| Time: 0:00:00 359.17 kB/s
astor-0.7.1-py 100% |###############################| Time: 0:00:00 613.60 kB/s
chardet-3.0.4- 100% |###############################| Time: 0:00:00 397.98 kB/s
freetype-2.10. 100% |###############################| Time: 0:00:01 413.89 kB/s
gast-0.2.2-py_ 100% |###############################| Time: 0:00:00 517.65 kB/s
idna-2.8-py36_ 100% |###############################| Time: 0:00:00 419.99 kB/s
m2w64-gcc-libs 100% |###############################| Time: 0:00:01 437.75 kB/s
markdown-2.6.1 100% |###############################| Time: 0:00:00 327.46 kB/s
markupsafe-1.1 100% |###############################| Time: 0:00:00 565.70 kB/s
numpy-1.16.2-p 100% |###############################| Time: 0:00:12 340.12 kB/s
olefile-0.46-p 100% |###############################| Time: 0:00:00 549.48 kB/s
pycparser-2.19 100% |###############################| Time: 0:00:00 291.87 kB/s
pyreadline-2.1 100% |###############################| Time: 0:00:00 211.44 kB/s
pyyaml-5.1-py3 100% |###############################| Time: 0:00:00 466.58 kB/s
six-1.12.0-py3 100% |###############################| Time: 0:00:00   1.36 MB/s
termcolor-1.1. 100% |###############################| Time: 0:00:00   2.92 MB/s
werkzeug-0.15. 100% |###############################| Time: 0:00:00 273.66 kB/s
win_inet_pton- 100% |###############################| Time: 0:00:00 580.63 kB/s
absl-py-0.7.1- 100% |###############################| Time: 0:00:00 357.82 kB/s
cffi-1.12.2-py 100% |###############################| Time: 0:00:00 398.58 kB/s
h5py-2.9.0-nom 100% |###############################| Time: 0:00:03 273.20 kB/s
mako-1.0.7-py_ 100% |###############################| Time: 0:00:00 130.42 kB/s
pillow-5.4.1-p 100% |###############################| Time: 0:00:02 308.92 kB/s
pysocks-1.6.8- 100% |###############################| Time: 0:00:00 544.14 kB/s
scipy-1.2.1-py 100% |###############################| Time: 0:00:49 298.90 kB/s
cryptography-2 100% |###############################| Time: 0:00:01 463.36 kB/s
grpcio-1.16.0- 100% |###############################| Time: 0:00:02 328.97 kB/s
protobuf-3.7.0 100% |###############################| Time: 0:00:01 347.05 kB/s
pygpu-0.7.6-py 100% |###############################| Time: 0:00:01 433.41 kB/s
pyopenssl-19.0 100% |###############################| Time: 0:00:00 356.25 kB/s
tensorboard-1. 100% |###############################| Time: 0:00:09 359.36 kB/s
theano-1.0.4-p 100% |###############################| Time: 0:00:12 321.46 kB/s
tensorflow-1.1 100% |###############################| Time: 0:00:59 569.64 kB/s
urllib3-1.24.1 100% |###############################| Time: 0:00:00   2.37 MB/s
requests-2.21. 100% |###############################| Time: 0:00:00   2.76 MB/s
tensorflow-hub 100% |###############################| Time: 0:00:00   7.43 MB/s
keras-applicat 100% |###############################| Time: 0:00:00   3.77 MB/s
keras-2.2.4-py 100% |###############################| Time: 0:00:00   2.32 MB/s
keras-preproce 100% |###############################| Time: 0:00:00 863.89 kB/s

Installation complete.


Restarting R session...

> 
> library(keras)
> mnist <- dataset_mnist()
Using TensorFlow backend.
Error: ImportError: Traceback (most recent call last):
  File 
"C:\Users\user\MINICO~1\envs\R-TENS~1\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py",
 line 14, in swig_import_helper
    return importlib.import_module(mname)
  File "C:\Users\user\MINICO~1\envs\R-TENS~1\lib\importlib\__init__.py", line 
126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "<frozen importlib._bootstrap>", line 994, in _gcd_import
  File "<frozen importlib._bootstrap>", line 971, in _find_and_load
  File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked
  File "<frozen importlib._bootstrap>", line 658, in _load_unlocked
  File "<frozen importlib._bootstrap>", line 571, in module_from_spec
  File "<frozen importlib._bootstrap_external>", line 922, in create_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
ImportError: DLL load failed with error code -1073741795

During handling of the above exce
______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to