Hi, I am helping a friend with an analysis for a study where she sampled wrack biomass in 15 different sites across three years. At each site, she sampled from three different transects. She is trying to estimate the effect of year*site on biomass while accounting for the nested nature (site/transcet) and repeated measure study design.
wrack.biomass ~ year * site + (1 | site/trans) However she gets the following warning messages: Warning messages: 1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : unable to evaluate scaled gradient 2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Hessian is numerically singular: parameters are not uniquely determined And her model output is: > summary(wrackbio) Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod'] Formula: (actual.mean.biomass.m2.50.m.transect) ~ year * site + (1 | site/trans) Data: wrack_resp_allyrs_transname REML criterion at convergence: 691 Scaled residuals: Min 1Q Median 3Q Max -3.3292 -0.2624 -0.0270 0.1681 3.8024 Random effects: Groups Name Variance Std.Dev. trans:site (Intercept) 0.0000 0.0000 site (Intercept) 0.5531 0.7437 Residual 94.6453 9.7286 Number of obs: 132, groups: trans:site, 44; site, 15 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 9.692e+00 5.666e+00 1.119e-04 1.711 0.999 year2016 1.256e+01 7.943e+00 8.700e+01 1.582 0.117 year2017 2.395e+00 7.943e+00 8.700e+01 0.302 0.764 siteCL 5.672e+01 8.013e+00 1.119e-04 7.079 0.999 siteDO -4.315e+00 8.013e+00 1.119e-04 -0.539 0.999 siteFL 7.872e+00 8.013e+00 1.119e-04 0.982 0.999 siteFS -7.619e+00 8.013e+00 1.119e-04 -0.951 0.999 siteGH 4.369e+00 8.013e+00 1.119e-04 0.545 0.999 siteLB -3.747e+00 8.013e+00 1.119e-04 -0.468 0.999 siteLBP -5.298e+00 8.943e+00 1.736e-04 -0.592 0.999 siteNB -2.953e+00 8.013e+00 1.119e-04 -0.369 1.000 siteNS 1.005e+00 8.013e+00 1.119e-04 0.125 1.000 sitePC -5.238e+00 8.013e+00 1.119e-04 -0.654 0.999 siteSB -7.649e+00 8.013e+00 1.119e-04 -0.955 0.999 siteSILT -4.734e+00 8.013e+00 1.119e-04 -0.591 0.999 siteSL -7.890e+00 8.013e+00 1.119e-04 -0.985 0.999 siteUD -8.230e+00 8.013e+00 1.119e-04 -1.027 0.999 year2016:siteCL -6.359e+01 1.123e+01 8.700e+01 -5.660 1.91e-07 *** year2017:siteCL -5.210e+01 1.123e+01 8.700e+01 -4.638 1.23e-05 *** year2016:siteDO -1.550e+01 1.123e+01 8.700e+01 -1.380 0.171 year2017:siteDO -3.022e+00 1.123e+01 8.700e+01 -0.269 0.789 year2016:siteFL -7.522e+00 1.123e+01 8.700e+01 -0.670 0.505 year2017:siteFL -1.167e+01 1.123e+01 8.700e+01 -1.039 0.302 year2016:siteFS -1.391e+01 1.123e+01 8.700e+01 -1.238 0.219 year2017:siteFS -2.170e+00 1.123e+01 8.700e+01 -0.193 0.847 year2016:siteGH -9.135e+00 1.123e+01 8.700e+01 -0.813 0.418 year2017:siteGH -4.031e+00 1.123e+01 8.700e+01 -0.359 0.721 year2016:siteLB -8.668e+00 1.123e+01 8.700e+01 -0.772 0.442 year2017:siteLB -1.530e+00 1.123e+01 8.700e+01 -0.136 0.892 year2016:siteLBP -5.336e+00 1.256e+01 8.700e+01 -0.425 0.672 year2017:siteLBP -1.826e+00 1.256e+01 8.700e+01 -0.145 0.885 year2016:siteNB -7.999e+00 1.123e+01 8.700e+01 -0.712 0.478 year2017:siteNB -5.645e+00 1.123e+01 8.700e+01 -0.502 0.617 year2016:siteNS -8.871e+00 1.123e+01 8.700e+01 -0.790 0.432 year2017:siteNS -3.443e+00 1.123e+01 8.700e+01 -0.306 0.760 year2016:sitePC -1.603e+01 1.123e+01 8.700e+01 -1.427 0.157 year2017:sitePC -2.955e+00 1.123e+01 8.700e+01 -0.263 0.793 year2016:siteSB -1.316e+01 1.123e+01 8.700e+01 -1.171 0.245 year2017:siteSB -3.220e+00 1.123e+01 8.700e+01 -0.287 0.775 year2016:siteSILT -1.616e+01 1.123e+01 8.700e+01 -1.438 0.154 year2017:siteSILT -2.497e-01 1.123e+01 8.700e+01 -0.022 0.982 year2016:siteSL -1.004e+01 1.123e+01 8.700e+01 -0.894 0.374 year2017:siteSL 1.123e+00 1.123e+01 8.700e+01 0.100 0.921 year2016:siteUD -1.345e+01 1.123e+01 8.700e+01 -1.197 0.235 year2017:siteUD 3.810e+00 1.123e+01 8.700e+01 0.339 0.735 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Correlation matrix not shown by default, as p = 45 > 12. Use print(x, correlation=TRUE) or vcov(x) if you need it convergence code: 0 unable to evaluate scaled gradient Hessian is numerically singular: parameters are not uniquely determined Is the model unable to converge because her dataset is too small to include an interaction term or is stemming from issues of model structure? Thanks! Caroline [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.