Or library(multgee) fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, data=RightWomen, id= Politician_ID,repeated=Country_ID) summary(fitord)
Should I use dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) ? Στις Δευ, 6 Αυγ 2018 στις 6:00 μ.μ., ο/η euthymios kasvikis < euthymios.k.kasvi...@gmail.com> έγραψε: > First of all thanks for your advice. So suppose that I would like to use > the multgee package. The model would be like: > library(multgee) > fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, > data=RightWomen, > id= ordered(factor(Country_ID))) > summary(fitord) > > Στις Δευ, 6 Αυγ 2018 στις 7:29 π.μ., ο/η Duncan Mackay < > dulca...@bigpond.com> έγραψε: > >> Hi >> >> Please read the geepack manual carefully. >> GEE ordinal regression is not simple. >> You need to format your data and do not use sample as a storage name. It >> is >> the name of a function >> >> dta is storage >> dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) >> >> m0 <- >> ordgee(Ideo_Ordinal ~ Machiavellianism+Psychopathy+Narcissism ,data = dta, >> id = Country_ID, >> corstr = "independence") >> >> You need to see if the model is appropriate first and whether the sandwich >> errors are right before you go further >> >> If this is your data you may not get credible results. >> You need to read up on the requirements of GEEs and ordinal GEEs in >> particular >> There are a number of packages with different data requirements and >> methods >> If you have repeated measurements repolr; ?multgee (just from memory) >> Small sample sizes are a problem there are a number of packages dealing >> with >> this but you will have to see which is best for you >> Many do not offer a method for ordinal or multinomial GEE. >> One further question to ask population specific or subject specific ie >> to >> GEE or not to GEE >> >> >> Regards >> >> Duncan >> >> Duncan Mackay >> Department of Agronomy and Soil Science >> University of New England >> Armidale NSW 2350 >> >> >> >> -----Original Message----- >> From: R-help [mailto:r-help-boun...@r-project.org] On Behalf Of euthymios >> kasvikis >> Sent: Saturday, 4 August 2018 07:30 >> To: r-help@r-project.org >> Subject: [R] Perform GEE regression in R with multiple dependent variables >> >> Im trying to perform generalized estimating equation (GEE) on the (sample) >> dataset below with R and I would like some little guidance. First of all I >> will describe my dataset. As you can see below it includes 5 variables. >> Country_ID shows the country of the politician, Ideo_Ordinal his poltical >> belief from 1 to 7 (far left to far right). Then we have measurements >> regarding three characteristics. I would like to run an analysis based on >> the country and the political beliefs of every politician (dependent >> variables) in relation with the 3 characteristics. I have used the geepack >> package using: >> >> library(geepack) >> >> samplem<-coef(summary(geeglm(sample$Ideo_Ordinal >> ~Machiavellianism+Psychopathy+Narcissism ,data = sample, id = >> sample$Ideo_Ordinal, >> corstr = "independence"))) %>% >> rownames_to_column() %>% >> mutate(lowerWald = Estimate-1.96*Std.err, # Lower Wald CI >> upperWald=Estimate+1.96*Std.err, # Upper Wald CI >> df=1, >> ExpBeta = exp(Estimate)) %>% # Transformed estimate >> mutate(lWald=exp(lowerWald), # Upper transformed >> uWald=exp(upperWald)) # Lower transformed >> samplem >> >> I would like to know if it is valid to add in this method the Country_ID >> simultaneously with Ideo_Ordinal and how to do it. >> >> Country_ID Ideo_Ordinal Machiavellianism Narcissism Psychopathy >> 3 1 3 0.250895132 0.155238716 >> 0.128683755 >> 5 1 3 -0.117725000 -0.336256435 >> -0.203137879 >> 7 1 3 0.269509029 -0.260728261 >> 0.086819555 >> 9 1 6 0.108873496 0.175528190 >> 0.182884928 >> 14 1 3 0.173129951 0.054468468 >> 0.155030794 >> 15 1 6 -0.312088872 -0.414358301 >> -0.212599946 >> 17 1 3 -0.297647658 -0.096523143 >> -0.228533352 >> 18 1 3 -0.020389157 -0.210180866 >> -0.046687695 >> 20 1 3 -0.523432382 -0.125114982 >> -0.431070629 >> 21 1 1 0.040304508 0.022743463 >> 0.233657881 >> 22 1 3 0.253695988 -0.330825166 >> 0.101122320 >> 23 1 3 -0.478673895 -0.421801231 >> -0.422894791 >> 27 1 6 -0.040856419 -0.566728704 >> -0.136069484 >> 28 1 3 0.240040249 -0.398404825 >> 0.135603114 >> 29 1 6 -0.207631653 -0.005347621 >> -0.294935155 >> 30 1 3 0.458042533 0.462935386 >> 0.586244831 >> 31 1 3 -0.259850232 -0.233074787 >> -0.092249465 >> 33 1 3 0.002164223 -0.637668706 >> -0.267158031 >> 34 1 6 0.050991955 -0.098030021 >> -0.043826848 >> 36 1 3 -0.338052871 -0.168894328 >> -0.230198200 >> 38 1 3 0.174382347 0.023807812 >> 0.192963609 >> 41 2 3 -0.227322148 -0.010016330 >> -0.095576329 >> 42 2 3 -0.267514920 0.066108837 >> -0.218979873 >> 43 2 3 0.421277754 0.385223920 >> 0.421274111 >> 44 2 3 -0.399592341 -0.498154998 >> -0.320402699 >> 45 2 1 0.162038344 0.328116118 >> 0.104105963 >> 47 2 3 -0.080755709 0.003080287 >> -0.043568723 >> 48 2 3 0.059474124 -0.447305420 >> 0.003988071 >> 49 2 3 -0.219773040 -0.312902659 >> -0.239057883 >> 51 2 3 0.438659431 0.364042111 >> 0.393014172 >> 52 2 3 -0.088560903 -0.490889275 >> -0.006041054 >> 53 2 3 -0.122612591 0.074438944 >> 0.103722836 >> 54 2 3 -0.450586055 -0.304253061 >> -0.132365179 >> 55 2 6 -0.710545197 -0.451329850 >> -0.764201786 >> 56 2 3 0.330718447 0.335460128 >> 0.429173481 >> 57 2 3 0.442508023 0.297522144 >> 0.407155726 >> 60 2 3 0.060797815 -0.096516876 >> -0.012802977 >> 61 2 3 -0.250757764 -0.113219864 >> -0.215345379 >> 62 2 1 0.153654345 -0.089615287 >> 0.118626045 >> 65 2 3 0.042969508 -0.486999608 >> -0.080829636 >> 66 3 3 0.158337022 0.208229002 >> 0.241607154 >> 67 3 3 0.220237408 0.397914524 >> 0.262207709 >> 69 3 3 0.200558577 0.244419633 >> 0.301732113 >> 71 3 3 0.690244689 0.772692418 >> 0.625921098 >> 72 3 3 0.189810070 0.377774321 >> 0.293988340 >> 73 3 3 -0.385724422 -0.262131032 >> -0.373159652 >> 74 3 3 -0.124095769 -0.109816334 >> -0.127157915 >> 75 3 1 0.173299879 0.453592671 >> 0.325357383 >> 76 3 3 -0.598215129 -0.643286651 >> -0.423824759 >> 77 3 3 -0.420558406 -0.361763025 >> -0.465612116 >> 78 3 3 -0.176788569 -0.305506924 >> -0.203730879 >> 80 3 3 -0.114790731 0.262392918 >> 0.061382073 >> 81 3 3 -0.274904173 -0.342603918 >> -0.302761994 >> 82 3 3 -0.146902101 -0.059558818 >> -0.120550957 >> 84 3 3 0.038303792 -0.139833875 >> 0.170005914 >> 85 3 3 -0.220212221 -0.541399757 >> -0.555201764 >> 87 3 3 0.255300386 0.179484246 >> 0.421428096 >> 88 3 6 -0.548823069 -0.405541620 >> -0.322935805 >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> >> [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.