mean(lst) ### See ?mean. A list cannot be an argument of mean. lst$mean ## nonsense! Don't guess -- read the docs.
Here is an an example: > z <- list() > for(i in 1:5) z[i] <- i > z [[1]] [1] 1 [[2]] [1] 2 [[3]] [1] 3 [[4]] [1] 4 [[5]] [1] 5 > mean(z) [1] NA Warning message: In mean.default(z) : argument is not numeric or logical: returning NA > class(z) [1] "list" > z <- unlist(z) > mean(z) [1] 3 Cheers, Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Tue, May 8, 2018 at 12:26 PM, varin sacha via R-help < r-help@r-project.org> wrote: > > Dear R-experts, > > Here below the reproducible example. I am trying to get the average of the > 100 results coming from the "lst" function. I have tried lst$mean and > mean(lst). It does not work. > Any help would be highly appreciated. > > #################### > > ## R script for getting MedAe and MedAeSQ from HBR model on Testing data > install.packages("robustbase") > install.packages( "MASS" ) > install.packages( "quantreg" ) > install.packages( "RobPer") > install.packages("devtools") > library("devtools") > install_github("kloke/hbrfit") > install.packages('http://www.stat.wmich.edu/mckean/Stat666/ > Pkgs/npsmReg2_0.1.1.tar.gz') > library(robustbase) > library(MASS) > library(quantreg) > library(RobPer) > library(hbrfit) > > # numeric variables > A=c(2,3,4,3,2,6,5,6,4,3,5,55,6,5,4,5,6,6,7,52) > B=c(45,43,23,47,65,21,12,7,18,29,56,45,34,23,12,65,4,34,54,23) > D=c(21,54,34,12,4,56,74,3,12,71,14,15,63,34,35,23,24,21,69,32) > > # Create a dataframe > BIO<-data.frame(A,B,D) > > # Create a list to store the results > lst<-list() > > # This statement does the repetitions (looping) > for(i in 1 :100) > { > > # randomize sampling seed > n=dim(BIO)[1] > p=0.667 > > # Sample size > sam=sample(1 :n,floor(p*n),replace=FALSE) > > # Sample training data > Training =BIO [sam,] > > # Sample testing data > Testing = BIO [-sam,] > > # Build the HBR model > HBR<-hbrfit(D ~ A+B) > > # Grab the coefficients > HBR_intercept <- as.numeric(HBR$coefficients[1]) > HBR_coefA <- as.numeric(HBR$coefficients[2]) > HBR_coefB <- as.numeric(HBR$coefficients[3]) > > # Predict response on testing data > Testing$pred <- HBR_intercept + HBR_coefA * Testing$A + HBR_coefB > *Testing$B > > # Get errors > Testing$sq_error <- (Testing$D-Testing$pred)^2 > Testing$abs_error <- abs(Testing$D-Testing$pred) > MedAe <- median(Testing$abs_error) > MedAe > MedAeSQ <-median(Testing$sq_error) > MedAeSQ > > lst[i]<-MedAe > } > lst > mean(lst) > lst$mean > > ###################### > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/ > posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.