Dear All, using the example from the help of summary.rms library(rms) n <- 1000 # define sample size set.seed(17) # so can reproduce the results age <- rnorm(n, 50, 10) blood.pressure <- rnorm(n, 120, 15) cholesterol <- rnorm(n, 200, 25) sex <- factor(sample(c('female','male'), n,TRUE)) label(age) <- 'Age' # label is in Hmisc label(cholesterol) <- 'Total Cholesterol' label(blood.pressure) <- 'Systolic Blood Pressure' label(sex) <- 'Sex' units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc units(blood.pressure) <- 'mmHg' # Specify population model for log odds that Y=1 L <- .4*(sex=='male') + .045*(age-50) + (log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) # Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)] y <- ifelse(runif(n) < plogis(L), 1, 0) ddist <- datadist(age, blood.pressure, cholesterol, sex) options(datadist='ddist') fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4))) s <- summary(fit) plot(s) as you will see the plot will by default include the low and high values from the summary printed on the plot to the right of the variable name... Any thoughts on how printing these low and high values can be suppressed, ie: prevent them from being printed?
appreciate your help, Andras ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.