Dear All,
using the example from the help of summary.rms

library(rms)
n <- 1000    # define sample size 
set.seed(17) # so can reproduce the results 
age            <- rnorm(n, 50, 10) 
blood.pressure <- rnorm(n, 120, 15) 
cholesterol    <- rnorm(n, 200, 25) 
sex            <- factor(sample(c('female','male'), n,TRUE)) 
label(age)            <- 'Age'      # label is in Hmisc 
label(cholesterol)    <- 'Total Cholesterol' 
label(blood.pressure) <- 'Systolic Blood Pressure' 
label(sex)            <- 'Sex' 
units(cholesterol)    <- 'mg/dl'   # uses units.default in Hmisc 
units(blood.pressure) <- 'mmHg' 
# Specify population model for log odds that Y=1 
L <- .4*(sex=='male') + .045*(age-50) + 
(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) 
# Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)] 
y <- ifelse(runif(n) < plogis(L), 1, 0) 
ddist <- datadist(age, blood.pressure, cholesterol, sex) 
options(datadist='ddist') 
fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)))
s <- summary(fit) 
plot(s)
as you will see the plot will by default include the low and high values from 
the summary printed on the plot to the right of the variable name... Any 
thoughts on how printing these low and high values can be suppressed, ie: 
prevent them from being printed?

 
appreciate your help,
Andras

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to