Hi R Users, I do have very big data sets and wanted to run some of the analyses many times with randomization (1000 times). I have done the analysis using an example data but it need to be done with randomized data (1000 times). I am doing manually for 10000 times but taking so much time, I wonder whether it is possible to perform the analysis with creating a loop for many replicated datasets? The code and the example data sets are attached.
I will be very grateful if someone help me to create the loop for the following example data and the analyses. I appreciate your help. MW ##### dat1<-structure(list(RegionA = structure(c(1L, 1L, 2L, 3L, 3L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c("Ra", "Rb", "Rc", "Rd", "Re", "Rf"), class = "factor"), site = structure(c(1L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L), .Label = c("s1", "s10", "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9"), class = "factor"), temp = c(23L, 21L, 10L, 15L, 16L, 8L, 13L, 1L, 23L, 19L, 25L, 19L, 12L, 16L, 19L, 21L, 12L, 5L, 7L), group = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("A", "B", "C"), class = "factor")), .Names = c("RegionA", "site", "temp", "group"), class = "data.frame", row.names = c(NA, -19L)) head(dat1) dat2<-structure(list(group = structure(1:3, .Label = c("A", "B", "C" ), class = "factor"), totalP = c(250L, 375L, 180L), sampled = c(25L, 37L, 27L)), .Names = c("group", "total.pop", "sampled.pop"), class = "data.frame", row.names = c(NA, -3L)) ## idx <- 1:nrow(dat1) lll <- split(idx, dat1$group) ########################## #Replication 1 create a resampled data ############################ Replication1<-dat1[unlist(lapply(lll, sample, rep=TRUE)),] Summary.Rep1<-ddply(Replication1, c("group"), summarise, N = length(group), mean = mean(temp, na.rm=TRUE), sd = sd(temp), se = sd / sqrt(N), variance=sd^2 ) #merge two datasets (dat1 and dat2) Rep1<-merge(Summary.Rep1, dat2, by="group") #calclate adjusted mean. variance Rep1$adj.mean<-(Rep1$total.pop*Rep1$mean)/sum(Rep1$total.pop) Rep1$adj.var<-(Rep1$variance)/(Rep1$sampled.pop/(1-(Rep1$sampled.pop/Rep1$ total.pop))) Rep1$over.adj.var<-(Rep1$total.pop/sum(Rep1$total.pop))^2*Rep1$adj.var Rep1$total<-Rep1$adj.mean*(Rep1$total.pop) ## Estimated.TotalTemp<-sum(Rep1$adj.mean)*sum(Rep1$total.pop) Estimated.totalvar<-sum(Rep1$adj.var) Estimated.SE<-sqrt(Estimated.totalvar)*sum(Rep1$total.pop) RESULTS.R1<-data.frame(Estimated.TotalTemp, SE=Estimated.SE) RESULTS.R1 ########################## #Replication 2 create a resampled data ############################ Replication2<-dat1[unlist(lapply(lll, sample, rep=TRUE)),] Summary.Rep2<-ddply(Replication2, c("group"), summarise, N = length(group), mean = mean(temp, na.rm=TRUE), sd = sd(temp), se = sd / sqrt(N), variance=sd^2 ) #merge two datasets Rep1<-merge(Summary.Rep2, dat2, by="group") #calclate adjusted mean. variance Rep2$adj.mean<-(Rep2$total.pop*Rep2$mean)/sum(Rep2$total.pop) Rep2$adj.var<-(Rep2$variance)/(Rep2$sampled.pop/(1-(Rep2$sampled.pop/Rep2$ total.pop))) Rep2$over.adj.var<-(Rep2$total.pop/sum(Rep2$total.pop))^2*Rep2$adj.var Rep2$total<-Rep2$adj.mean*(Rep2$total.pop) ## Estimated.TotalTemp<-sum(Rep2$adj.mean)*sum(Rep2$total.pop) Estimated.totalvar<-sum(Rep2$adj.var) Estimated.SE<-sqrt(Estimated.totalvar)*sum(Rep2$total.pop) RESULTS.R2<-data.frame(Estimated.TotalTemp, SE=Estimated.SE) ############################## #combined all results from 1000 runs ALL.Results(Restult.R1, Result.R2....) [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.