Dear Sir/Madam, I am trying to do PCA analysis with "iris" dataset and trying to interpret the result. Dataset contains 150 obs of 5 variables
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa ..... ..... 150 5.9 3.0 5.1 18 verginica now I used 'prcomp' function on dataset and got result as following: >print(pc) Standard deviations (1, .., p=4): [1] 1.7083611 0.9560494 0.3830886 0.1439265 Rotation (n x k) = (4 x 4): PC1 PC2 PC3 PC4 Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863 Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096 Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492 Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971 I'm planning to use PCA as feature selection process and remove variables which are corelated in my project, I have interpreted the PCA result, but not sure is my interpretation is correct or wrong. If you can correct me it will be of great help. If i notice the PCs result, I found both positive and negative data. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.