Thank you for your reply Chunhao! I attached only part of the test data and that is why you might not be able to get convergence. Sorry.
I have a couple more questions: For the second question you answered, how to specify the correct length of starting values. I tried using the length of levels in each of the parameters in the start list but found: >fm1 <- nlme(DIFN ~ SSlogis(SVA, Asym, R0, lrc),data = LAST,fixed = Asym + R0 + >lrc ~ dir %in% loc,random = Asym ~ 1,start =list(Asym = c(1,1,1,1), R0 = >c(1,1,1,1), lrc = c(-5,-2,-2,-2))) Error in nlme.formula(DIFN ~ SSlogis(SVA, Asym, R0, lrc), data = LAST, : start must have a component called "fixed" I've got two loc levels (A,B) with four group levels(N,E,S,W); How I am gonna define the list and the component called"fixed"? My another question is about the fitted value of the model. If I want to calculate adjusted R square, I have to get fitted(fm1). WHich has values like this; >fitted(fm1)[1:40] AB/N AB/N AB/E AB/S AB/W AB/W AB/W AB/W AB/W AB/W 0.6541876 0.7421748 0.8408251 0.5879220 0.4889387 0.6129576 0.5097593 0.6195679 0.5152567 0.5680860 AB/W AB/W AB/W AB/W AB/W AB/W AB/N AB/N AB/N AB/E 0.4724423 0.8128148 0.7674529 0.7106698 0.6553155 0.6074771 0.5036201 0.5464105 0.6062978 0.6878438 AB/N AB/N AB/N AB/S AB/S AB/S AB/S AB/S AB/S AB/S 0.7792725 0.8411961 0.7942503 0.7354845 0.5895700 0.6781973 0.6286886 0.5212052 0.8864748 0.8370021 AB/S AB/S AB/N AB/N AB/N AB/N AB/E AB/E AB/E AB/E 0.7750731 0.7147024 0.6625288 0.5492599 0.5959280 0.6612426 0.7501786 0.8498928 0.6274681 0.7118615 My question is how to get the fitted values for specified group levels (eg. values for AB/E)? Thank all very much! Jenny >Hi Jenny, >I try your code but I did not get in converge in fm3 (see the below). >For the first question, you could use fm1 to interpret the result >without bothering fm2 and fm3. It means that R0 and lrc can be treated >as pure fixed effects (Pinherir and Bates, 2000 Book). > >For the second question, your want to know "is AB/E different from the AB/S" > >The simplest way is to change your fixed statement: >fixed = Asym+R0+lrc ~ dir %in% loc >and specify the correct length of starting values. > >If I am wrong please correct me~ > >Hope this helpful. > >Chunhao Tu > >> test<-read.table(file="C:\\Documents and >> Settings\\ado_cabgfaculty\\Desktop\\sun.txt", header=T) >> LAST<-groupedData(Y~X|loc/dir, data=test) >> >> fm1 <- nlme(Y ~ SSlogis(X, Asym, R0, lrc),data = LAST, >+ random = Asym ~1, >+ fixed = Asym+R0+lrc ~ 1, >+ start=c(Asym = 0.97, R0 = 1.14, lrc = -0.18)) >> fm2 <- update(fm1, random = pdDiag(Asym + R0 ~ 1)) >> fm3 <- update(fm2, random = pdDiag(Asym+R0+lrc~ 1)) >Error in nlme.formula(model = Y ~ SSlogis(X, Asym, R0, lrc), data = LAST, : > Step halving factor reduced below minimum in PNLS step > > > > >Quoting Jenny Sun <[EMAIL PROTECTED]>: > >> My special thanks to Chunhao Tu for the suggestions about testing >> significance of two locations. >> >> I used logistic models to describe relationships between Y and X at >> two locations (A & B). And within each location, I have four groups >> (N,E,S,W)representing directions. So the test data can be arranged as: >> >> Y X dir loc >> 0.6295 0.8667596 S A >> 0.7890 0.7324820 S A >> 0.4735 0.9688875 S A >> 0.7805 1.1125239 S A >> 0.8640 0.9506174 E A >> 0.9445 0.6582157 E A >> 0.8455 0.5558860 E A >> 0.9380 0.3304870 E A >> 0.4010 1.1763090 N A >> 0.2585 1.3202890 N A >> 0.3750 1.1763090 E A >> 0.3855 1.3202890 E A >> 0.3020 1.1763090 S A >> 0.2300 1.3202890 S A >> 0.3155 1.1763090 W A >> 0.8890 0.6915861 W B >> 0.9185 0.6149019 W B >> 0.9275 0.5289258 W B >> 0.8365 0.9507088 S B >> 0.7720 0.8842165 N B >> 0.8615 0.8245123 N B >> 0.9170 0.7559687 W B >> 0.9590 0.6772720 W B >> 0.9900 0.5872023 W B >> 0.9940 0.4849064 W B >> 0.7500 0.9560776 W B >> >> >> The data is grouped using: >> >>> LAST<-groupedData(Y~X|loc/dir, data=test) >> >> I then used logistic models to define the relationship between Y and >> X, and got fm1, fm2, and fm3 as follows: >> >> -------------------------- >>> fm1 <- nlme(DIFN ~ SSlogis(SVA, Asym, R0, lrc),data = LAST,fixed = >>> Asym + R0 + lrc ~ 1,random = Asym ~ 1,start =c(Asym = 1, R0 = 1, >>> lrc = -5)) >>> fm2 <- update(fm1, random = pdDiag(Asym + R0 ~ 1)) >>> fm3 <- update(fm2, random = pdDiag(Asym + R0 + lrc ~ 1)) >>> anova(fm1,fm2,fm3) >> ------------------------------------------------------------ >> ANOVA showed: >> >>> anova(fm1,fm2,fm3) >> Model df AIC BIC logLik Test L.Ratio p-value >> fm1 1 7 -1809.913 -1774.304 910.9564 >> fm2 2 9 -1805.774 -1758.295 910.8871 1 vs 2 0.1386696 0.9999 >> fm3 3 12 -1801.822 -1742.473 910.9109 2 vs 3 0.0475543 0.9666 >> >> ** question: do the results show that fm1 could represent the >> results of fm2 and fm3? >> >>> coef(fm1) >> Asym R0 lrc >> AB/E 0.9148927 1.389432 -0.3009858 >> AB/N 0.8775250 1.389432 -0.3009858 >> AB/S 0.9247592 1.389432 -0.3009858 >> AB/W 0.8479180 1.389432 -0.3009858 >> BC/E 0.8791908 1.389432 -0.3009858 >> BC/N 0.8414229 1.389432 -0.3009858 >> BC/S 0.9169323 1.389432 -0.3009858 >> BC/W 0.8817838 1.389432 -0.3009858 >> >> ** question: how could I know if any of the models is significantly >> different from the other ones? (eg. AB/E is different from the AB/S)? >> >>> summary(fm1) >> Nonlinear mixed-effects model fit by maximum likelihood >> Model: DIFN ~ SSlogis(SVA, Asym, R0, lrc) >> Data: LAST >> AIC BIC logLik >> -1809.913 -1774.304 910.9564 >> >> Random effects: >> Formula: Asym ~ 1 | loc >> Asym >> StdDev: 2.303402e-05 >> >> Formula: Asym ~ 1 | dir %in% loc >> Asym Residual >> StdDev: 0.03208693 0.1741559 >> >> Fixed effects: Asym + R0 + lrc ~ 1 >> Value Std.Error DF t-value p-value >> Asym 0.8855531 0.015375906 2783 57.59355 0 >> R0 1.3894322 0.009418047 2783 147.52869 0 >> lrc -0.3009858 0.012833066 2783 -23.45393 0 >> Correlation: >> Asym R0 >> R0 -0.440 >> lrc -0.452 0.150 >> >> Standardized Within-Group Residuals: >> Min Q1 Med Q3 Max >> -4.1326757 -0.6117037 0.1082112 0.6575250 3.3297270 >> >> Number of Observations: 2793 >> Number of Groups: >> loc dir %in% loc >> 2 8 >> >> >> I have marked all the codes and questions(**). Any answers and >> suggestions are appreciated. >> >> Have a good day! >> >> Jenny >> >> ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.