Hi Jon, sorry for the inconvenience. I have done it in plain text now.
I am building a VAR model to forecast of bivariate time series. But it shows flat forecast and i am in need of correcting it. Is there any way to correct this flat forecast? or Do i have to go with other models? Code: > datax.zoo <- read.zoo(datax) > datax.ts <- ts(datax.zoo) > v1b <- VARselect(datax.ts, lag.max = 10, type = "const") > v1b$selection AIC(n) HQ(n) SC(n) FPE(n) 10 7 3 10 > var7 = VAR(datax.ts, p=7) > serial.test(var7, lags.pt=10, type = "PT.asymptotic") Portmanteau Test (asymptotic) data: Residuals of VAR object var7 Chi-squared = 31.991, df = 12, p-value = 0.001388 > gf1 <- forecast(var7, h = 600) > plot(gf1, main = "var7") > grangertest(datax.ts[,1] ~ datax.ts[,2], order = 7) Granger causality test Model 1: datax.ts[, 1] ~ Lags(datax.ts[, 1], 1:7) + Lags(datax.ts[, 2], 1:7) Model 2: datax.ts[, 1] ~ Lags(datax.ts[, 1], 1:7) Res.Df Df F Pr(>F) 1 9968 2 9975 -7 20.852 < 2.2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > grangertest(datax.ts[,2] ~ datax.ts[,1], order = 7) Granger causality test Model 1: datax.ts[, 2] ~ Lags(datax.ts[, 2], 1:7) + Lags(datax.ts[, 1], 1:7) Model 2: datax.ts[, 2] ~ Lags(datax.ts[, 2], 1:7) Res.Df Df F Pr(>F) 1 9968 2 9975 -7 3.0918 0.002948 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 The P value from "Portmanteau Test" is very much less than << 0.05 for lagged value 7. Is this correct? I have added my plot and raw data in the attachment for your further reference. Thank you. Regards| Mit freundlichen Grüßen, > Dhivya Narayanasamy Regards| Mit freundlichen Grüßen, Dhivya Narayanasamy Contact No: +91-8438505020 On Sun, May 21, 2017 at 5:40 PM, John C Frain <fra...@gmail.com> wrote: > It would be much easier to see what you are doing if you reposted in plain > text. > > John C Frain > 3 Aranleigh Park > Rathfarnham > Dublin 14 > Ireland > www.tcd.ie/Economics/staff/frainj/home.html > mailto:fra...@tcd.ie > mailto:fra...@gmail.com > > On 21 May 2017 at 06:05, Dhivya Narayanasamy <dhiv.shr...@gmail.com> > wrote: > >> I am building a VAR model to forecast of bivariate timeseries. But it >> shows >> flat forecast. >> >> So I would like to use recursive window forecasting technique using VAR >> model. Will it give what i expect (Avoid flat forecast) ? or should i have >> to go with other package. >> >> > datax.zoo <- read.zoo(datax)> datax.ts <- ts(datax.zoo)> v1b <- >> VARselect(datax.ts, lag.max = 10, type = "const")> v1b >> $selection >> AIC(n) HQ(n) SC(n) FPE(n) >> 9 7 5 9 >> >> $criteria >> 1 2 3 4 >> 5 6 7 >> AIC(n) 9.686513 9.657172 9.632444 9.625856 >> 9.621148 9.619425 9.615396 >> HQ(n) 9.688951 9.661234 9.638131 9.633167 >> 9.630085 9.629987 9.627583 >> SC(n) 9.693514 9.668839 9.648778 9.646856 >> 9.646815 9.649759 9.650397 >> FPE(n) 16099.014774 15633.507506 15251.665643 15151.510512 >> 15080.352425 15054.392389 14993.864861 >> 8 9 10 >> AIC(n) 9.615430 9.615116 9.615990 >> HQ(n) 9.629241 9.630552 9.633051 >> SC(n) 9.655098 9.659451 9.664991 >> FPE(n) 14994.366572 14989.661383 15002.762011 >> > var7 = VAR(datax.ts, p=7)> serial.test(var7, lags.pt=10, type = >> "PT.asymptotic") >> >> Portmanteau Test (asymptotic) >> >> data: Residuals of VAR object var7Chi-squared = 22.745, df = 12, >> p-value = 0.02997 >> > grangertest(datax.ts[,1] ~ datax.ts[,2], order = 7)Granger causality >> test >> Model 1: datax.ts[, 1] ~ Lags(datax.ts[, 1], 1:7) + Lags(datax.ts[, >> 2], 1:7)Model 2: datax.ts[, 1] ~ Lags(datax.ts[, 1], 1:7) >> Res.Df Df F Pr(>F) 1 5686 2 >> 5693 -7 16.105 < 2.2e-16 ***---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 >> ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1> grangertest(datax.ts[,2] ~ datax.ts[,1], >> order = 7)Granger causality test >> Model 1: datax.ts[, 2] ~ Lags(datax.ts[, 2], 1:7) + Lags(datax.ts[, >> 1], 1:7)Model 2: datax.ts[, 2] ~ Lags(datax.ts[, 2], 1:7) >> Res.Df Df F Pr(>F)1 5686 2 5693 -7 1.5618 >> 0.1418 >> > g <- forecast(var7, h = 600)> plot(g) >> >> >> Also the 'P' value from portmanteau test shows auto correlation is >> present >> is my VAR model. Here is my raw data you can find : >> https://drive.google.com/file/d/0B7I0DT-PiG4RenVkdXV3OFJLYVk >> /view?usp=sharing >> >> >> Thank you. >> >> Regards >> > Dhivya Narayanasamy >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posti >> ng-guide.html >> and provide commented, minimal, self-contained, reproducible code. > > > ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.