Hi Prateek, There is some difficulty with including the empty categories in the factors generated. I couldn't get these even with drop=FALSE, so I had to go through the "xtab" function. You can do it with the "table" function in the base package, but it is a little more trouble. See if this is what you want>
ppdat<-read.table(text="mou_mean,totalmrc_mean,rev_range,mou_range,Churn 23,24,25,27,1 45,46,47,49,1 43,44,45,47,1 45,46,47,49,0 56,57,58,60,0 67,68,69,71,1 67,68,69,71,0 44,45,46,48,1 33,34,35,37,0 90,91,92,94,1 87,88,89,91,1 76,77,78,80,1 33,34,35,37,1 44,45,46,48,1", sep=",",header=TRUE) ppdat$mou_mean_cut<-cut(ppdat$mou_mean,breaks=seq(23,103,10),include.lowest=TRUE) ppdat$totalmrc_mean_cut<-cut(ppdat$totalmrc_mean,breaks=seq(23,103,10)) ppdat$rev_range_cut<-cut(ppdat$rev_range,breaks=seq(23,103,10)) ppdat$mou_range_cut<-cut(ppdat$mou_range,breaks=seq(23,103,10)) library(prettyR) ppx<-xtab(Churn~mou_mean_cut,ppdat) mou_mean_agg<-100*ppx$counts[2,]/colSums(ppx$counts) mou_mean_agg[is.nan(mou_mean_agg)]<-0 ppx<-xtab(Churn~totalmrc_mean_cut,ppdat) totalmrc_mean_agg<-100*ppx$counts[2,]/colSums(ppx$counts) totalmrc_mean_agg[is.nan(totalmrc_mean_agg)]<-0 ppx<-xtab(Churn~rev_range_cut,ppdat) rev_range_agg<-100*ppx$counts[2,]/colSums(ppx$counts) rev_range_agg[is.nan(rev_range_agg)]<-0 ppx<-xtab(Churn~mou_range_cut,ppdat) mou_range_agg<-100*ppx$counts[2,]/colSums(ppx$counts) mou_range_agg[is.nan(mou_range_agg)]<-0 ppmat<-matrix(c(mou_mean_agg,totalmrc_mean_agg,rev_range_agg, mou_range_agg),nrow=4,byrow=TRUE) library(plotrix) barp(ppmat,col=rainbow(4),main="Multiple histogram",ylim=c(0,105), names.arg=levels(ppdat$mou_mean_cut),ylab="Percent churn") legend(2.5,107,c("mou_mean","totalmrc_mean","rev_range","mou_range"), fill=rainbow(4)) Jim On Wed, Apr 19, 2017 at 11:05 PM, prateek pande <prtkpa...@gmail.com> wrote: > Hi, > > I have a data as mentioned below(at the bottom) > > Now out of that data i have to create multiple histograms in a single view > in R. On that histogram i need on x -axis binned data with Breaks 10 and > on y axis event rate . Here churn is dependent variable. > > > *for example, for mou_mean , on x -axis on histogram i need Bins(mou_mean) > and on y - axis in need Churn%age. * > *Bins(mou_mean)* > > *Churn %age* > 23-43 0.23% > 33-53 0.5% > 43-63 0.3% > 53-73 0.4% > 63-83 0.7% > 83-103 0.8% > > Please help > > > *mou_mean* > > *totalmrc_mean* > > *rev_range* > > *mou_range* > > *Churn* > > 23 > > 24 > > 25 > > 27 > > 1 > > 45 > > 46 > > 47 > > 49 > > 1 > > 43 > > 44 > > 45 > > 47 > > 1 > > 45 > > 46 > > 47 > > 49 > > 0 > > 56 > > 57 > > 58 > > 60 > > 0 > > 67 > > 68 > > 69 > > 71 > > 1 > > 67 > > 68 > > 69 > > 71 > > 0 > > 44 > > 45 > > 46 > > 48 > > 1 > > 33 > > 34 > > 35 > > 37 > > 0 > > 90 > > 91 > > 92 > > 94 > > 1 > > 87 > > 88 > > 89 > > 91 > > 1 > > 76 > > 77 > > 78 > > 80 > > 1 > > 33 > > 34 > > 35 > > 37 > > 1 > > 44 > > 45 > > 46 > > 48 > > 1 > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.