Hi, Joel,

I think, according to the help page of mi.t.test,

mi.t.test(implist, x = "pre_test", y = "post_test",
  alternative = "greater", paired = TRUE, var.equal = TRUE,
  conf.level = 0.95)

should do it (untested).

 Hth  --  Gerrit

---------------------------------------------------------------------
Dr. Gerrit Eichner                   Mathematical Institute, Room 212
gerrit.eich...@math.uni-giessen.de   Justus-Liebig-University Giessen
Tel: +49-(0)641-99-32104          Arndtstr. 2, 35392 Giessen, Germany
Fax: +49-(0)641-99-32109            http://www.uni-giessen.de/eichner
---------------------------------------------------------------------

Am 06.04.2017 um 18:32 schrieb Joel Gagnon:
Dear all,

It is my first time posting on this list so forgive me for any rookie
mistakes I could make.

I want to conduct t-tests on a dataset that has been imputed using the mice
package:
imput_pps <- mice(pps, m=20, maxit=20, meth='pmm') # pps is my dataset. It
contains items from an 11-item questionnaire gather at pre and post test.
So the data set has 22 columns.

I then proceed to compute the total scores for the pre and post test on my
imputed datasets:

long_pps <- complete(imput_pps, action ="long", include = TRUE)
long_pps$pre_test <- rowSums(long_pps[ ,c(3:13)])
long_pps$post_test <- rowSums(long_pps[ , c(14:24)])

I then used as.mids to convert back to mids object:
mids_pps <- as.mids(long_pps)

Next, I created an imputation list object using mitools:
implist <- lapply(seq(mids_pps$m), function(im) complete(mids_pps, im))
implist <- imputationList(implist)

Now, I want to conduct t-tests using the mi.t.test package. I tried the
following code:
mi.t.test(implist, implist$pre_test, implist$post_test, alternative =
"greater", paired = TRUE, var.equal = TRUE, conf.level = 0.95)

When I run this code, R tells me that Y is missing. I know this may sound
stupid, but I thought that I specified Y with this line: implist$pre_test,
implist$post_test - with implist$pre_test being X and implist$post_test
being Y - like I usually do for a normal t-test using the t.test function.

It seems I don't quite understand what the Y variable is supposed to
represent. Could someone help me figure out what I am doing wrong? You
help would be very much appreciated.

Best regards,

Joel Gagnon, Ph.D(c),
Department of Psychology,
Université du Québec à Trois-Rivières
Québec, Canada

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to