What does it mean if a categorical moderator is significant overall but has no 
significant pairwise contrasts between moderator levels?



I'm using metaphor to conduct a meta-analysis with a categorical moderator with 
3 levels; this yields a significant result:

              Test of Moderators (coefficient(s) 1,2,3):

      F(df1 = 3, df2 = 37) = 4.6052, p-val = 0.0078


Model Results:
                                          estimate      se    tval    pval    
ci.lb   ci.ub
factor(sample_data$Participants)Adults      0.3920  0.2847  1.3771  0.1768  
-0.1848  0.9688
factor(sample_data$Participants)Online      0.1403  0.1283  1.0935  0.2812  
-0.1197  0.4004
factor(sample_data$Participants)Students    0.2350  0.0717  3.2747  0.0023   
0.0896  0.3803  **



But then I conduct contrasts between each moderator level, and none of these 
are significant (no correction for multiple comparisons applied):



                Linear Hypotheses:

                       Estimate Std. Error z value Pr(>|z|)

      Online - Adults == 0    -0.2517     0.3123  -0.806    0.420

      Students - Adults == 0  -0.1571     0.2936  -0.535    0.593

      Students - Online == 0   0.0946     0.1470   0.643    0.520

      (Adjusted p values reported -- none method)



Any thoughts or guides to interpretation are appreciated!  My code and sample 
data are at the end of the email.  My interpretation is that while one of the 
moderator levels may have be a significant factor in the overall analysis, the 
comparisons between moderator levels are noisier because they test to see if 
there is a difference in the weights between the two levels.  Given this 
pattern of results, I conclude the different moderator levels are probably not 
strong predictors of effect size.  I'm a bit uncertain if this is correct, and 
would appreciate any feedback.



Bob



========

Robert Calin-Jageman

Professor, Psychology

Neuroscience Program Director

Dominican University

Parmer 210

7900 West Division

River Forest, IL 60305

rcalinjage...@dom.edu

708.524.6581

http://calin-jageman.net



Sample data link:

https://www.dropbox.com/s/hzz9wmt1d9tcxsm/red_effect_males.csv?dl=0

Code:



#load required libraries

library("metafor")

library("multcomp")



sample_data <- read.csv("red_effect_males.csv")



#Overall test of categorical moderator, reports significant result

mod_test = rma(yi, vi, mods = ~factor(sample_data$Participants) - 1, 
data=sample_data, knha = TRUE)

print(mod_test)



#Now do pairwise contrasts - but these show no significant contrasts....why?

cont_holder <- c(1:length(unique(sample_data$Participants)))

names(cont_holder) <- sort(unique(sample_data$Participants))

print(summary(glht(mod_test, linfct=contrMat(cont_holder, "Tukey")), 
test=adjusted("none")))





#Now print individual meta-analysis for each subgroub... Effect sizes estimates 
and CIs aren't the same as in overall analysis...why?

subgroup_list <- split(sample_data, sample_data$Participants, drop=FALSE)

for (subgroup in subgroup_list) {

  print(paste("Individual results for: ", subgroup$Participants[1]))

  print(rma(yi, vi, data=subgroup, knha=TRUE))

}





        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to