Hi all, Consider the data set where there are a continuous response variable, a continuous predictor "weeks" and a categorical variable "region" with five levels "a", "b", "c", "d", "e". I fit the ANCOVA model as follows. Here the reference level is region "a" and there are 4 dummy variables. The interaction terms (in red below) represent the slope difference between each region and the baseline region "a" and the corresponding p-value is for testing whether this slope difference is zero. Is there a way to directly test whether the slope corresponding to each individual factor level is 0 or not, instead of testing the slope difference from the baseline level? Thanks very much. Hanna
> mod <- lm(response ~ weeks*region,data)> summary(mod) Call: lm(formula = response ~ weeks * region, data = data) Residuals: Min 1Q Median 3Q Max -0.19228 -0.07433 -0.01283 0.04439 0.24544 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.2105556 0.0954567 12.682 1.2e-14 *** weeks -0.0213333 0.0147293 -1.448 0.156 regionb -0.0257778 0.1349962 -0.191 0.850 regionc -0.0344444 0.1349962 -0.255 0.800 regiond -0.0754444 0.1349962 -0.559 0.580 regione -0.1482222 0.1349962 -1.098 0.280 weeks:regionb -0.0007222 0.0208304 -0.035 0.973 weeks:regionc -0.0017778 0.0208304 -0.085 0.932 weeks:regiond 0.0030000 0.0208304 0.144 0.886 weeks:regione 0.0301667 0.0208304 1.448 0.156 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1082 on 35 degrees of freedom Multiple R-squared: 0.2678, Adjusted R-squared: 0.07946 F-statistic: 1.422 on 9 and 35 DF, p-value: 0.2165 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.