Hi, I have attached the historical dataset (titled data) containing numerical variables GDP, HPA, FX and Y - I am interested to predict Y given some future values of GDP, HPA and FX.
- Some variables are non-statioanry as per adf.test() - I wanted to implement a VECM framework for modeling cointegration, so I have used *result = VECM(data, lag = 3, r = 1)* , and I get the output below showing that cointegration relationship does exist between these 4 variables: - My question is: How do I get predictions of Y given externally-generated future values of the other variables (for say, upcoming 10 time points), using this result programmatically? Regards, Preetam ############# Model VECM ############# Full sample size: 25 End sample size: 22 Number of variables: 4 Number of estimated slope parameters 40 AIC 23.84198 BIC 70.75681 SSR 156.5155 Cointegrating vector (estimated by ML): GDP HPA FX Y r1 1 2.171994 -6.823215 -0.07767563 ECT Intercept GDP -1 Equation GDP 0.0612(0.0436) 0.0141(0.0687) -0.4268(0.2494) Equation HPA -0.6368(0.2381)* 0.1858(0.3749) 3.1656(1.3609)* Equation FX 0.1307(0.0874) -0.0039(0.1377) 0.1739(0.4997) Equation Y -0.0852(0.4261) 0.3219(0.6711) -5.0248(2.4359). HPA -1 FX -1 Y -1 Equation GDP -0.0910(0.0790) 0.1988(0.2261) 0.0413(0.0299) Equation HPA 0.4891(0.4311) -2.2140(1.2337). -0.3206(0.1631). Equation FX -0.2108(0.1583) -0.2536(0.4530) -0.0303(0.0599) Equation Y -0.3686(0.7716) 0.5234(2.2083) -0.9638(0.2920)** GDP -2 HPA -2 FX -2 Equation GDP -0.2892(0.2452) -0.0622(0.0563) 0.0598(0.1352) Equation HPA -0.7084(1.3379) 0.1877(0.3069) -0.2231(0.7377) Equation FX -0.1773(0.4913) -0.0170(0.1127) -0.2486(0.2709) Equation Y -3.8521(2.3948) -0.4559(0.5494) 1.1239(1.3205) Y -2 Equation GDP 0.0411(0.0279) Equation HPA -0.2447(0.1521) Equation FX -0.0102(0.0559) Equation Y -0.1696(0.2723)
GDP HPA FX Y 0.514662421 0.635997077 1.37802145 1.773342598 0.936722 3.127683176 1.391916535 3.709809052 0.101482324 1.270555421 0.831157511 0.226267793 0.017548634 2.456061547 1.003945759 9.510258161 0.236462416 0.988324147 0.223682679 5.026671536 0.372005149 2.177631629 0.904226065 4.219235789 0.153915709 4.620341653 0.033410743 3.17396006 0.524887329 1.050861084 0.518201484 7.950098612 0.776616937 0.503349512 0.666089868 3.320938471 0.760074361 3.635853456 0.470220952 6.380945175 0.802986662 1.260738545 0.452674872 1.036040804 0.375145127 0.20035625 1.837306306 6.486871565 0.002568896 3.532359526 0.556752154 8.536594244 0.754309276 3.952381767 0.247402168 8.559081716 0.585966577 4.01463047 1.184382133 0.148121669 0.39767356 1.553753452 0.983129422 5.378373676 0.859898623 4.73191381 0.828795696 3.367809329 0.741376169 4.993350692 1.758051281 5.516460988 0.329240391 3.465836416 1.701655508 1.249497907 0.078661064 3.298298811 0.04575857 5.132921426 0.270971873 0.46627043 1.739487411 4.94697541 0.731072625 0.940642982 0.728747166 7.583041122 0.385038046 3.51048946 0.021866584 7.361148458 0.530760376 1.204422978 0.415530715 1.163503483 0.555323667 4.777712592 1.844184811 8.596644394
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.