Below is my interpretation of one way to achieve your stated goal. I don't
know what analysis you plan to perform, but this seems unlikely to be be
my preferred analysis format (I think I would probably analyze subsets of
the records related to specific parts of the transactions).
library(dplyr)
library(tidyr)
fifteenminutes <- 15 * 60
# for education, show intermediate results
# strip out square brackets
View( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
)
# split the single column into multiple columns
View( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
%>% separate( values, paste0( "value", 0:3 ), ", *" )
)
# pull separate value columns into one column called value, with a new
# column vcol to hold the name of the original column
View( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
%>% separate( values, paste0( "value", 0:3 ), ", *" )
%>% gather( vcol, value, c( value0, value1, value2, value3 ) )
)
# create a timestamp column for the individual values
View( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
%>% separate( values, paste0( "value", 0:3 ), ", *" )
%>% gather( vcol, value, c( value0, value1, value2, value3 ) )
%>% mutate( timestamp = start
+ fifteenminutes
* as.numeric( sub( "value", "", vcol ) ) )
)
# remove the old vcol column now that timestamp column is created
View( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
%>% separate( values, paste0( "value", 0:3 ), ", *" )
%>% gather( vcol, value, c( value0, value1, value2, value3 ) )
%>% mutate( timestamp = start
+ fifteenminutes
* as.numeric( sub( "value", "", vcol ) ) )
%>% select( -vcol )
)
# unite several columns that currently distinguish various rows
View( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
%>% separate( values, paste0( "value", 0:3 ), ", *" )
%>% gather( vcol, value, c( value0, value1, value2, value3 ) )
%>% mutate( timestamp = start
+ fifteenminutes
* as.numeric( sub( "value", "", vcol ) ) )
%>% select( -vcol )
%>% unite( mname, mtype, nic, tcp_state, limit_type, value_type, name )
)
# spread values out into separate columns
test_data2 <- ( test_data
%>% mutate( values = sub( "^\\[(.*)\\]$", "\\1", values ) )
%>% separate( values, paste0( "value", 0:3 ), ", *" )
%>% gather( vcol, value, c( value0, value1, value2, value3 )
)
%>% mutate( timestamp = start + fifteenminutes * as.numeric(
sub( "value", "", vcol ) ) )
%>% select( -vcol )
%>% unite( mname, mtype, nic, tcp_state, limit_type,
value_type, name )
%>% spread( mname, value )
)
View( test_data2 )
On Wed, 4 Jan 2017, David Wolfskill wrote:
On Wed, Jan 04, 2017 at 08:33:46PM -0800, David Winsemius wrote:
...
Perhaps something like this:
# function to read the values in 'values':
parse_values <- function(x) {scan(text= gsub( "\\[|\\]","",x), sep=",") }
# the apply function reads line-by-line
new_dat <- apply(test_data, 1, function(d) data.frame( as.list(d[!names(d) %in%
"values"]), nvals <- parse_values(d['values']) ) )
Hmmm.... OK; that looks a lot better than the stuff that was coming to
my mind -- thanks! :-)
...
# Could suppress the report from scan by adding quiet = TRUE
# now take this list of 4 line data.frames and "rbind" them
# If you wanted these to remain character you would use stringsAsFactors=FALSE
in the data.frame call
new_df <- do.call("rbind", new_dat)
Aye.
...
(I will also end up collecting all of the records for a given timestamp
and hostname, and creating one very wide record with all of the data
from the set of records thus found. I already have (yes, Perl) code to
do this -- though if there's a reasonable way to avoid that, I'm
interested.)
I thought you wanted the data in long form.
Sorry; I'm not understanding what you mean: My background is a lot more
toward systems administration than statistical analysis.
The repository I'm using has a rather large number of individual metrics
from a given server -- each provided on a separate row. (That's why one
of the columns is called "name" -- it provides the (base) "name" of the
metric that corresponds to the "values" on the given row.) I'll plan to
assemble the rows for a given server & timestamp into a single row --
thuse, I would have the tcp_connection_count for the "last ACK" state
and for the "fin_wait_2" state, as well as CpuSystem, CpuUser, CpuIdle,
... for the given server & timestamp on a single row (eventually).
...
Thanks again!
Peace,
david
--
David H. Wolfskill r...@catwhisker.org
Epistemology for post-truthers: How do we select parts of reality to ignore?
See http://www.catwhisker.org/~david/publickey.gpg for my public key.
---------------------------------------------------------------------------
Jeff Newmiller The ..... ..... Go Live...
DCN:<jdnew...@dcn.davis.ca.us> Basics: ##.#. ##.#. Live Go...
Live: OO#.. Dead: OO#.. Playing
Research Engineer (Solar/Batteries O.O#. #.O#. with
/Software/Embedded Controllers) .OO#. .OO#. rocks...1k
______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.