> > > I would like to do an internal validation of a discriminative ability of a > mixed effects models. > > Here is my scrip: > > ########################### > ####bootMer-> boot AUC##### > ########################### > > library(lme4) > library(lattice) > data(cbpp) > > #fit a model > > cbpp$Y<-cbpp$incidence>=1 > glmm<-glmer(Y~period + size + (1|herd), family=binomial, data=cbpp) > glmm > > ##### funcio: versio 3 - no cal posar endpoint en la funcio > ########################################################## > > > > AUCFun <- function(fit) { > library(pROC) > pred<-predict(fit, type="response") > AUC<-as.numeric(auc(fit@resp$y, pred)) > } > > > #test > > (AUCFun(glmm)) > > ###run bootMer: AUCFun > > > > system.time(AUC.boot <- bootMer(glmm,nsim=100,FUN=AUCFun,seed=1982, > use.u=TRUE, > type="parametric", parallel="multicore", > ncpus=2)) > > > #... > > (boot.ci(AUC.boot, index =c(1,1), type="norm")) > > roc(cbpp$Y, predict(glmm, type="response")) > > > #Now it seems more reasonable, bias as "optimism"... but still do not know > #if I am just doing a AUC with bootstrap CI > ************************************************************************************************************************************** > > >
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.