I have model-data named as: model that is split as model.T(train) and model.V(test or validation). The least square model (from lm to step) is built withmodel.T and I like to see how model.T is robust by comparing predicted model.V toactual model.V. How do I get score for model.V based on model built on model.T? The code highlighted below does not get what I expected.Please advise! Thanks! # score the model score.T <- data.frame(predict(step, model.T)) # get predicted score for train data score.V <- data.frame(predict(step, model.V)) # for test data but seems incorrect # get the actual values actual.T <- data.frame(model.T$sales) actual.V <- data.frame(model.V$sales) # comparison for model.T comp.T=cbind(actual.T,round(score.T,digit=2)) plot(comp.T) # comparison for model.V (use Model.T to predict Model.V for true validation comp.V=cbind(actual.V,round(score.V,digit=2)) plot(comp.V) [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.