I have model-data named as: model that is split as model.T(train) and 
model.V(test or validation). The least square model (from lm to step) is built 
withmodel.T and I like to see how model.T is robust by comparing predicted 
model.V toactual model.V. How do I get score for model.V based on model built 
on model.T? The code highlighted below does not get what I expected.Please 
advise! Thanks!
  # score the model 
  score.T <- data.frame(predict(step, model.T))  # get predicted score for 
train data
  score.V <- data.frame(predict(step, model.V))  # for test data but seems 
incorrect
  # get the actual values 
  actual.T <- data.frame(model.T$sales) 
  actual.V <- data.frame(model.V$sales)   # comparison for model.T
  comp.T=cbind(actual.T,round(score.T,digit=2))
  plot(comp.T)  # comparison for model.V (use Model.T to predict Model.V for 
true validation
  comp.V=cbind(actual.V,round(score.V,digit=2))
  plot(comp.V)
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to