Hello,

I apologize my prior email was sent in html. 

It is not very clear to me from the model.matrix documentation, why simply 
changing the order of terms in the formula may give a different design matrix. 
Please note I’m purposely not including main effects in the model formulae.

set.seed(1)
x1 <- rnorm(100)
f1 <- factor(sample(letters[1:3], 100, replace = TRUE))
trt <- sample(c(-1,1), 100, replace = TRUE)
df <- data.frame(x1=x1, f1=f1, trt=trt)

head(model.matrix( ~ x1:trt + f1:trt, data = df))
(Intercept)     x1:trt trt:f1b trt:f1c
1           1 -0.6264538       0       0
2           1 -0.1836433       0       0
3           1  0.8356286      -1       0
4           1 -1.5952808       0       0
5           1 -0.3295078       0       0
6           1 -0.8204684       1       0

head(model.matrix(~ f1:trt + x1:trt, data = df)) 
(Intercept) f1a:trt f1b:trt f1c:trt     trt:x1
1           1       1       0       0 -0.6264538
2           1      -1       0       0 -0.1836433
3           1       0      -1       0  0.8356286
4           1      -1       0       0 -1.5952808
5           1      -1       0       0 -0.3295078
6           1       0       1       0 -0.8204684

Thanks,
Axel.

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to