Merry Christmas everyone:
I have the following data(mydat) and would like to fit a conditional logistic 
regression model considering "weights".
id  case exposure   weights
1     1         1          2
1     0         0          2
2     1         1          2 
2     0         0          2 
3     1         1          1 
3     0         0          1 
4     1         0          2 
4     0         1          2  The R function"clogit" is for such purposes but 
it ignores weights. I tried function"mclogit" instead which seems that it 
considers the weights 
option:##############################################################options(scipen=999)library(mclogit)#
 create the above data frameid          = c(1,1,2,2,3,3,4,4)case      = 
c(1,0,1,0,1,0,1,0)exposure = c(1,0,1,0,1,0,0,1)weights  = 
c(2,2,2,2,1,1,2,2)(mydata  = data.frame(id,case,exposure,weights)) fit      = 
mclogit(cbind(case,id) ~ exposure,weights=weights, 
data=mydata)summary(fit)######################################################################
The answer,however, doesn't seem to be correct. Could anyone pleaseprovides me 
with some solution to this? Thanks in advance,Keramat Nourijelyani,PhD  

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to