And in case you would like to explore the supervised clustering approach, I may suggest to explore the use of knn() fed by a training set determined by your cluster assignments expectations. Some "quick code" to show what I mean.
z <- as.data.frame(cbind(scale(x), scale(y))) colnames(z) <- c("x", "y") n <- nrow(z) train <- seq(1,0.3*n,1) ztrain <- as.data.frame(z[train,]) cl <- vector(mode="numeric", length=length(train)) for (i in 1:nrow(ztrain)) { if (ztrain[i,"y"] > 2 | ztrain[i,"x"] > 0) { cl[i] <- 2 } else { cl[i] <- 1 } } plot(ztrain, col=cl) library(class) ztest<- as.data.frame(z[-train,]) knn.model <- knn(ztrain, ztest, cl, k = 3) plot(ztest, col=knn.model) ztrain$cl <- cl ztest$cl <- knn.model z.res <- rbind(ztrain,ztest) plot(z.res$x, z.res$y, col=z.res$cl) -- GG [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.