Hi, I am trying to obtain power of Likelihood ratio test for comparing gamma distribution against generalized gamma distribution. And so I need maximum likelihood estimates of Generalized gamma distribution with three parameters. I wrote code as follows.
require(bbmle) library("bbmle") require(flexsurv) library("flexsurv") sig=0.05 den=1000 n=30 apar=2 ###alpha bpar=3 ##beta cpar=2 ##c parameter LRatio=function(den,n,par=c(cpar,apar,bpar)){ LR2=rep(0,den) count=rep(0,den) cpar=par[1] apar=par[2] bpar=par[3] for(i in 1:den){ y=rgengamma.orig(n,shape=cpar,scale=bpar,k=apar) gamma4 = function(shape, scale) { -sum(dgamma(y, shape = shape, scale = scale,log = TRUE)) } gm = mean(y) cv = var(y)/mean(y) m5 = mle2(gamma4, start = list(shape = gm/cv, scale = cv),method = "L-BFGS-B", lower =c(.00001,.00001),upper = c(Inf,Inf)) gengamma3 = function(shape, scale,k) { -sum(dgengamma.orig(y, shape = shape, scale = scale,k=k,log =TRUE)) } ci=mean(y) #c initial value a1=ci*mean(y)^(ci-1) a2=ci*(ci-1)*(mean(y)^(ci-1))/2 mu1=mean(y)^ci+a2*mean(y^2) mu2=(a1^2)*mean(y^2)+2*a1*a2*mean(y^3)+(a2^2)*(mean(y^4)-mean(y^2)^2) alp =(mu1^2)/mu2 #alpha initial value bet=mean(y)*gamma(alp)/gamma(alp+(1/ci)) #beta initial value m6 = mle2(gengamma3, start = list(shape = ci, scale = bet, k=alp),method = "L-BFGS-B", lower = c(.00001,.00001,.00001),upper = c(Inf, Inf, nf)) LR2[i]=2*(logLik(m6)-logLik(m5)) count[i]=LR2[i]>=qchisq(1-sig, df=1) } pow=sum(count)/den print(i) print(pow) } But I got error : optim(par = c(3.88907163215354, 3.62005456122935, 1.66499331462506 : L-BFGS-B needs finite values of 'fn' What is wrong? Can you hep me, thanks.. Deniz... ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.