Dear All, I'm trying to get the MLe for a certain distribution using maxLik () function. I wrote the log-likelihood function as follows: theta <-vector(mode = "numeric", length = 3) r<- 17 n <-30 T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) C<- c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) # The loglik. func. loglik <- function(param) { theta[1]<- param[1] theta[2]<- param[2] theta[3]<- param[3] l<-(r*log(theta[3]))+(r*log(theta[1]+theta[2]))+(n*theta[3]*log(theta[1]))+(n*theta[3]*log(theta[2]))+ (-1*(theta[3]+1))*sum(log((T*(theta[1]+theta[2]))+(theta[1]*theta[2])))+ (-1*theta[3]*sum(log((C*(theta[1]+theta[2]))+(theta[1]*theta[2])))) return(l) }
then, I evaluated it at theta<- c(40,50,2) v<-loglik(param=theta) v [1] -56.66653 I used this same log-likelihood function, once with analytic gradient and another time with numerical one, with the maxLik function, and in both cases I got the same 50 warning messages and an MLE which is completely unrealistic as per my applied example. a <- maxLik(loglik, gradlik, hesslik, start=c(40,50,2)) where gradlik and hesslik are the analytic gradient and Hessian matrix, respectively, given by: U <- vector(mode="numeric",length=3) gradlik<-function(param = theta,n, T,C) { U <- vector(mode="numeric",length=3) theta[1] <- param[1] theta[2] <- param[2] theta[3] <- param[3] r<- 17 n <-30 T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) C<- c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) U[1]<- (r/(theta[1]+theta[2]))+((n*theta[3])/theta[1])+( -1*(theta[3]+1))*sum((T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+ (-1*(theta[3]))*sum((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) U[2]<-(r/(theta[1]+theta[2]))+((n*theta[3])/theta[2])+ (-1*(theta[3]+1))*sum((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+ (-1*(theta[3]))*sum((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) U[3]<-(r/theta[3])+(n*log(theta[1]*theta[2]))+ (-1)*sum(log((T*(theta[1]+theta[2]))+(theta[1]*theta[2])))+(-1)*sum(log((C*(theta[1]+theta[2]))+(theta[1]*theta[2]))) return(U) } hesslik<-function(param=theta,n,T,C) { theta[1] <- param[1] theta[2] <- param[2] theta[3] <- param[3] r<- 17 n <-30 T<-c(7.048,0.743,2.404,1.374,2.233,1.52,23.531,5.182,4.502,1.362,1.15,1.86,1.692,11.659,1.631,2.212,5.451) C<- c(0.562,5.69,12.603,3.999,6.156,4.004,5.248,4.878,7.122,17.069,23.996,1.538,7.792) G<- matrix(nrow=3,ncol=3) G[1,1]<-((-1*r)/((theta[1]+theta[2])^2))+((-1*n*theta[3])/(theta[1])^2)+ (theta[3]+1)*sum(((T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+( theta[3])*sum(((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) G[1,2]<-((-1*r)/((theta[1]+theta[2])^2))+ (theta[3]+1)*sum(((T)/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+ (theta[3])*sum(((C)/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) G[2,1]<-G[1,2] G[1,3]<-(n/theta[1])+(-1)*sum( (T+theta[2])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+(-1)*sum((C+theta[2])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) G[3,1]<-G[1,3] G[2,2]<-((-1*r)/((theta[1]+theta[2])^2))+((-1*n*theta[3])/(theta[2])^2)+ (theta[3]+1)*sum(((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))^2)+( theta[3])*sum(((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2])))^2) G[2,3]<-(n/theta[2])+(-1)*sum((T+theta[1])/((theta[1]+theta[2])*T+(theta[1]*theta[2])))+(-1)*sum((C+theta[1])/((theta[1]+theta[2])*C+(theta[1]*theta[2]))) G[3,2]<-G[2,3] G[3,3]<-((-1*r)/(theta[3])^2) return(G) } and using numeric gradient and hessian matrix: a <- maxLik(loglik, start=c(40,50,2)) Warning messages: 1: In log(theta[3]) : NaNs produced 2: In log(theta[1] + theta[2]) : NaNs produced 3: In log(theta[1]) : NaNs produced 4: In log((T * (theta[1] + theta[2])) + (theta[1] * theta[2])) : NaNs produced 5: In log((C * (theta[1] + theta[2])) + (theta[1] * theta[2])) : NaNs produced 6: In log(theta[3]) : NaNs produced 7: In log(theta[1] + theta[2]) : NaNs produced and so on….. I don't know why I get these 50 warnings although: 1- The inputs of the log() function are strictly positive. 2- When I evaluated the log-likelihood fuction at the very begining it gave me a number(which is -56.66) and not (NAN). I've also tried to: 1- Reparamtrize my model using lamda(i)= log(theta(i)), for i=1,2,3, so that it may solve the problem, but it didn't. 2- I've used the comparederivitive() function, and the analytic and numeric gradients were so close. Any help please? Maram Salem [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.