Also when I try the following with Rmpfr, it works jut fine. > exp(sqrt(mpfr(163, 120)) * Const("pi", 120)) 1 'mpfr' number of precision 120 bits [1] 262537412640768743.99999999999925007601
and > exp(sqrt(mpfr(163, 400)) * Const("pi", 400)) 1 'mpfr' number of precision 400 bits [1] 262537412640768743.99999999999925007259719818568887935385633733699086270 753741037821064791011860731295118134618606450419548 Which compares very nicely with the following: In[10]:= N[Exp[Sqrt[163] Pi], 125] Out[10]= 2.6253741264076874399999999999925007259719818568887935385633733699086270 753741037821064791011860731295118134618606450419308389*10^17 In the multiprecision business, you can never be too certain that you are using the right precision throughout your calculations. Nordlund, Dan (DSHS/RDA <NordlDJ <at> dshs.wa.gov> writes: > > Ravi, > > Take a look at the following link. > > https://code.google.com/p/r-bc/ > > I followed the instructions to get a Windows version of the 'nix utility program , bc (a high precision > calculator), and the source for an R to bc interface. After installing them, I executed > > exp(sqrt(bc(163))*4*atan(bc(1))) > > in R and got this result > > "262537412640768743.9999999999992500725971981856888793538563373369908627 075374103782106479101186073116295306145602054347" > > I don't know if this is helpful, but ... > > Dan > > Daniel Nordlund, PhD > Research and Data Analysis Division > Services & Enterprise Support Administration > Washington State Department of Social and Health Services > ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.